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Abstract

We consider the problem of segmenting a biomedical im-
age into anatomical regions of interest. We specifically ad-
dress the frequent scenario where we have no paired train-
ing data that contains images and their manual segmenta-
tions. Instead, we employ unpaired segmentation images
that we use to build an anatomical prior. Critically these
segmentations can be derived from imaging data from a dif-
ferent dataset and imaging modality than the current task.
We introduce a generative probabilistic model that employs
the learned prior through a convolutional neural network
to compute segmentations in an unsupervised setting. We
conducted an empirical analysis of the proposed approach
in the context of structural brain MRI segmentation, using a
multi-study dataset of more than 14,000 scans. Our results
show that an anatomical prior enables fast unsupervised
segmentation which is typically not possible using stan-
dard convolutional networks. The integration of anatom-
ical priors can facilitate CNN-based anatomical segmen-
tation in a range of novel clinical problems, where few or
no annotations are available and thus standard networks
are not trainable. The code, model definitions and model
weights are freely available at http://github.com/
adalca/neuron.

1. Introduction

Biomedical image segmentation plays a crucial role in
many applications, such as population analysis, disease pro-
gression modelling, or treatment planning. Convolutional
neural networks (CNNs), a class of deep learning methods,
have recently been employed to derive powerful biomedical
segmentation algorithms, showing promise of overcoming
limitations in previous methods [3, 4, 29, 34]. However,
CNN-based approaches most often depend on (large-scale)
training data, particularly in the form of image scans paired
with segmentations. These annotations are often costly and
challenging to obtain because they require the tedious effort

of a trained expert, taking several expert hours per scan.

1.1. Contributions

To our knowledge, there has not been a theoretically rig-
orous effort to integrate rich probabilistic anatomical priors
with a CNN-based segmentation model in a computation-
ally effective manner. We introduce a generative model for
biomedical segmentation that employs an anatomical prior.
We describe a principled theoretical derivation that follows
directly from our generative model. We demonstrate that
this yields intuitive cost functions and simpler models. We
use an auto-encoding variational CNN to characterize the
anatomical prior, and an encoder-decoder CNN to provide
fast segmentation of medical images in unsupervised set-
tings.

We demonstrate the method in an unsupervised biomedi-
cal image segmentation setting where paired annotations are
not available. Our proposed strategy is general and compu-
tationally efficient, provides a natural framework for sam-
pling possible subject-specific segmentations of a scan, and
provides uncertainty estimates for these segmentations.

2. Related Work
2.1. Segmentation Convolutional Neural Networks

CNN-based segmentation approaches generally rely on
fully convolutional architectures applied to image data.
They extract hierarchical and multi-resolution features that
are in turn combined to compute a semantic segmenta-
tion [23, 29, 31, 34].

A popular discriminative segmentation architecture, U-
net [29], involves a convolutional encoder or downsam-
pling network, followed by a convolutional decoder or up-
sampling network, and skip-connections between layers.
The encoder captures relevant features of the input image
at different resolutions. The decoder then synthesizes a
high-resolution segmentation, using the skip connections to
achieve voxel-level precision. While the exact architecture
of these networks, such as the number of layers and levels,
size of convolution kernels, or application of batch normal-
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ization vary, they typically involve millions of parameters
and necessitate large datasets and data augmentation tech-
niques to train.

CNN-based segmentation models have two major short-
comings: the dependency on annotated data, limiting their
use in unsupervised settings; and their lack of anatomical
knowledge. The latter limits the network’s ability to be
faithful to known anatomical shapes during segmentation.

In our work, we use CNN architectures to learn anatom-
ical priors and segment medical images. The prior elim-
inates the burden of providing paired example segmenta-
tions.

2.2. Priors for Convolutional Neural Networks

A clinical expert performing manual delineation relies
on spatial coordinates and prior knowledge about anatomy,
and may use a template of the structures to constrain the
task. This process draws on the anatomical similarity across
patient scans. This is in stark contrast with typical computer
vision problems that have led to many popular CNN archi-
tectures, where object location, shape, and appearance can
be unpredictable.

Convolutional methods are often limited in incorporating
domain expertise. For example, U-Net [29] and its deriva-
tives produce segmentation algorithms that do not exploit
location information or other explicit anatomical priors. A
CNN might have difficulty differentiating two distinct ob-
jects that are consistently in two specific parts of the scan,
if they have the same intensity and context (as in bilateral
structures in two hemispheres)1. While increasingly more
complex networks that extend receptive fields may tease
out object differences in supervised settings, the problem
would be trivial if we consider anatomical knowledge like
spatial location. Furthermore, in these modalities, image
contrast can be weak or noisy in certain regions resulting in
uncertainty of the segmentations. An anatomical prior can
resolve these ambiguities, while making the segmentation
task easier.

A popular strategy to explicitly employ prior struc-
ture in CNNs for biomedical image segmentation is to
use a conditional random field (CRF) as a post-processing
step [13, 30, 34]. However, CRFs only captures local con-
straints, and adds to the computational burden. Location
information has been included as a feature in patch-based
CNN segmentation networks [34]. While this addition car-
ries prior location information, it is network-specific, in-
creases the parameter burden on the network, and does not
capture shape information.

Recent methods have employed shape priors for neural
network solutions in supervised problems [26, 28]. In par-
ticular, they often design a series of networks that learn rep-

1Assuming that the field of view of the network is constrained to not
include the other object’s vicinity

resentations of images and segmentations in a supervised
setting. They propose ad-hoc cost functions that encour-
age the computed segmentations to be similar to both the
learned shape and the ground truth. These methods attempt
to correct segmentations produced by standard CNNs by
adding a prior constraint.

Convolutional image generative models, such as gen-
erative adversarial nets, have grown in popularity. They
have recently been applied to biomedical image segmen-
tations [16, 24] in a supervised setting where standard loss
functions are combined with adversarial losses. A series of
recent papers in the computer vision community removes
the requirement for paired data by introducing a cycle de-
pendency [37]. However, these methods are less applicable
in medical image segmentation with many anatomical la-
bels, as an image signal can pass through the rich networks
at low cost, leading to a perfect cycle loss, circumventing
the required constraints [37].

Variational Bayes auto-encoders have been used for var-
ious tasks to learn probabilistic generative models, and of-
ten use convolutional networks [18]. Our method builds on
these models to combine anatomical priors with image gen-
eration.

2.3. Classical Generative Models

Encoding and exploiting prior knowledge is common
in generative models. Our inspiration comes from classi-
cal atlas-based probabilistic segmentation methods that es-
timate the maximum a posteriori (MAP) probability based
on a generative model involving a prior probability and like-
lihood [5, 10, 17, 27, 32, 33, 35].

The prior term captures knowledge of underlying
anatomy and usually involves a probabilistic atlas and a spa-
tial deformation that models geometric variation. The spa-
tial deformation can be explicitly solved using a registration
algorithm or accounted for in a unified segmentation frame-
work [1].

The likelihood models the physical process that yields
medical image intensities, sometimes called the appearance
model, conditioned on the latent anatomy. These appear-
ance models are often simpler, relying on additive and/or
multiplicative Gaussian or Rician noise models [35]. Model
parameters are most often estimated using training data,
such as annotated image pairs, for example using maximum
likelihood.

Given a new image, most popular segmentation algo-
rithms use numerical non-convex optimization and can take
several hours per image on a modern CPU.

In our model, we draw on ideas from classical model-
based biomedical segmentation algorithms, convolutional
neural networks (CNNs) used in semantic segmentation,
and recent developments in variational Bayes approxima-
tions using neural networks. In our experiments, we con-
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Figure 1. A graphical representation of our generative model. Cir-
cles indicate random variables and rounded squares represent pa-
rameters. Shaded circles represent observed quantities and the
plates indicate replication. xi is the acquired image. The image
intensities are generated from a normal distribution parametrized
by µl and σl for each anatomical label l in the label map s.
Anatomical priors are controlled by the variable z and categori-
cal parameters θs|z .

sider the segmentation of structural brain MRI scans into
cortical and subcortical regions of interest (ROIs). Our re-
sults show that the proposed anatomical prior enables rapid
unsupervised segmentation. While complex, specialized
tools exist for segmenting some specific scan modalities or
particular diseases, they do not generalize to other modali-
ties and can take hours to process one scan. Our goal is to
provide a first general approach to biomedical image seg-
mentation in an unsupervised setting.

3. Generative Model
We let x be an (MR) 3D volume, and assume it is gen-

erated from a 3D anatomical segmentation map s. We will
use x[j] and y[j] to denote the image intensity and label at
voxel j, respectively.

We use a generative model to describe the spatial dis-
tribution, shape, and appearance of anatomical structures.
Figure 1 provides a graphical representation.

The prior captures our knowledge about spatial distribu-
tions and shape of anatomy. We let z be a latent variable
representing an embedding of these shapes, and model the
prior probability of this embedding as normal with mean 0
and an identity covariance matrix:

p(z) = N (z;0,1), (1)

where N (·;µ,Σ) is the normal distribution parametrized
by mean µ and covariance Σ.

We let s be drawn from a categorical prior distri-
bution determined by the low-dimensional embedding z
via pθs|z (s|z):

pθs|z (s|z) =
∏
j

fj,s[j](z|θs|z) (2)

where fj,l(·;θs|z) is the probability of label l at voxel j.
Finally, given the label map s, the intensity observations

are generated via pθx|s(x|s), sampled at each voxel from a
normal distribution:

pθx|s(x|s) =
∏
j

∏
l

N (x[j];µl, σl)
δ(s[j]=l), (3)

where θz|s = {µl, σl}, and δ(s[j] = l) is the indica-
tor function that evaluates to 1 if s[j] = l and 0 oth-
erwise. The joint likelihood is therefore pθ(x, s|z) =
pθx|s(x|s)pθs|z (s|z), where θ = {θs|z,θx|s}.

We describe the learning procedure in the next section.
Given learned parameters, to obtain the segmentation si
given a new image xi, we perform MAP estimation:

ŝi = argmax
si

log p(si|xi;θ)

= argmax
si

log p(si,xi;θ) (4)

4. Learning
In this section, we describe a learning strategy that

uses convolutional neural networks to estimate anatomi-
cal representations and optimize posterior segmentation dis-
tributions. This procedure is applicable to broad mod-
elling choices for the probability distributions described
above. We also discuss a separate learning procedure for
the anatomical prior, uncertainty estimation, and implemen-
tation.

Without assuming voxel independence of the segmenta-
tion map given an image, estimating the posterior probabil-
ity pθ(s|x) is intractable since it involves integrating over
the latent variable z. Estimating pθ(z|x, s) is similarly in-
tractable, making the Expectation Maximization algorithm
not pertinent.

We first introduce an encoding probability qφ(z|x, s)
as an approximation to the intractable pθ(z|x, s), sim-
ilar to [18]. Consider the KL divergence between the
approximate distribution qφ(z|x, s) and the true poste-
rior pθ(z|x, s):

KL [qφ(z|x, s)||pθ(z|x, s)]
= IEq [log qφ(z|x, s)− log pθ(z|x, s)] (5)
= IEq [log qφ(z|x, s)− log pθ(x, s, z)] + log pθ(x, s).

Rearranging terms, we obtain

log p(x, s) = KL [qφ(z|x, s)||pθ(z|x, s)]
+ IEq [log pθ(x, s, z)− log qφ(z|x, s)] . (6)

Since the KL divergence of the approximate and true pos-
terior of z is non-negative, the second term is referred
to as the variational lower bound of the model evidence
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Figure 2. Left: Proposed Auto-Encoding Variational Anatomical Prior. A variational auto-encoder is combined with a location-specific
prior layer. Right: Proposed architecture for learning generative model parameters. Orange and blue arrows indicate down/up-
sampling in the prior and full model, respectively, and rectangles represent a stack of convolutional layers with non-linearities, with their
heights reflecting the size of the vectors.

or joint probability. For a given approximate distribu-
tion qφ(z|x, s), we can estimate θ by optimizing the lower
bound:

Vmodel(θ,φ;x, s)

= IEq [log pθ(x, s, z)− log qφ(z|x, s)]
= IEq [log pθ(x, s|z)]− KL [qφ(z|x, s)||p(z)] .

(7)

We model the approximating posterior qφ(z|x, s) as a
normal that depends on the image only:

qφ(z|x, s) = qφ(z|x)
= N (z;µz|x,Σz|x). (8)

where Σz|x is diagonal.
We estimate the parameters of the approximating distri-

bution using convolutional neural networks. We design an
encoding convolutional neural network encφ(x) that takes
as input x and outputs the parameters of the approximat-
ing posterior distribution µz|x(x), and Σz|x(x). This net-
work learns how to embed an entire (MR) image into the
most likely low-dimensional anatomical embedding z and
its variance.

Conditioned on z, the probability of the segmentation
can be computed with a decoder network decθs|z (z) that
takes z as input and outputs the parameters f(z;θs|z) of
the segmentation categorical distribution pθs|z (s|z). The
parameters θs|z of this decoder can be learned using a sep-
arate set of segmentations, as described below.

The final part of the generative model, the appearance or
likelihood model, can also be learned with a neural network
that takes a segmentation probability map as input and com-
putes the parameters µl. We separately estimate σl, assum-
ing additive zero mean Gaussian noise in an image, using a
difference of Laplacian filters [15].

4.1. Auto-Encoding Anatomical Prior

In this work, we learn a prior independently from an un-
paired segmentation dataset. This enables the flexibility of
having an external description of the anatomy that need not
be available in the current data. Unfortunately, as before,
estimating the probability distribution p(s) is intractable.
Following a derivation similar to the previous section and
to the auto-encoding variational Bayes framework, we in-
troduce an approximation qψ(z|s) to the posterior p(z|s)
as a normal distribution:

qψ(z|s) = N (z;µz|s,Σz|s), (9)

where Σz|s is diagonal, leading to the following lower
bound:

Vprior(θ,φ; s)

= IEq [log pθ(s, z)− log qφ(z|s)]
= IEq [log pθ(s|z)]− KL [qφ(z|s)||p(z)] . (10)

This optimization can be solved using a Stochastic Gra-
dient Variational Bayes (SGVB) estimator that uses mini-
batches. The reparametrization trick allows us to sam-
ple zk ∼ qφ(z|s), leading to an approximation of the ex-
pectation IE [·] [18]. The loss Li(θ,φ; si) for each data
point si and sample zk ∼ qφ(z|si) is

Lprior(θs|z,ψ; si, zk)

= KL [log qψ(z|si)|| log p(z)]− log pθs|z (si|zk)

=
1

2

∑
j

(1 + log
(
Σz|si [j])− µ

2
z|si [j]−Σz|si [j]

)
−
∑
j

si[j] log f(zk;θs|z)[j]. (11)



We design an encoding network encψ(s) that takes a
segmentation map as input and outputs the parameters µz|s
and Σz|s. Importantly, we learn the parameters of the en-
coding network given only a set of segmentations {si},
which can be derived from other imaging modalities and/or
datasets. The segmentation prior therefore does not require
paired training data in the traditional sense. For example,
we can use a prior computed using publicly available an-
notated datasets such as [19] in a problem that involves a
different imaging modality than in the current task.

4.2. Unsupervised Learning

We assume we have learned a segmentation prior using
the Auto-Encoding Anatomical Prior described in the previ-
ous section. In particular, we will utilize the decoder com-
ponent of the prior model, namely pθs|z (s|z).

If we had annotated pairs {xi, si}, we could jointly learn
model parameters θx|s, and variational parameters φ by
optimizing the evidence lower bound objective, similar to
the previous section. For each sample {xi, si} and sam-
ple zk ∼ qφ(z|xi, si), the loss function would be

Lmodel(θ,φ;xi, si, zk) = −Vi(θ,φ;xi, si, zk)
= KL [qφ(z|xi)||p(z)]− log pθs|z (xi, si|zk).
= KL [qφ(z|xi)||p(z)]− log pθs|z (si|zk)
− log pθx|s(xi|si).

=
1

2

∑
j

(1 + log
(
Σz|xi

[j])− µ2
z|xi

[j]−Σz|xi
[j]
)

−
∑
j

si[j] log f(z;θs|z)[j] (12)

+
∑
j

∑
l

δ(si[j] = l)

2σ2
l

(xi − µl).

resulting in terms of KL divergence, segmentation map cat-
egorical cross-entropy, and intensity-based mean squared
error, respectively. During training, these terms would en-
sure that the probability qφ(z|xi) stays close to the stan-
dard normal, while explaining the segmentations, and that
the model parameters θx|s = {µl,σl} capture the relation-
ship between the segmentations and the images.

However, in this paper we tackle the unsupervised set-
ting, where annotated pairs {xi, si} are not available, and
we only have the images {xi}. Therefore, we cannot com-
pute the categorical cross entropy term in (12). Instead, we
marginalize over the segmentation s in the second term of

the variational lower bound (7):

IEq

[
log

∫
s

pθ(x, s|z)ds
]

= IEq

[
log

∫
s

pθ(x|s)pθs|z (s|z)ds
]

≥ IEq

[∫
s

pθs|z (s|z) log pθ(x|s)ds
]

= IEq,p(s|z) [log pθ(x|s)] (13)

where we used Jensen’s inequality. We therefore arrive at
the following upper bound of the loss function:

Lmodel(θx|s,φ;xi, zi)

=
1

2

∑
j

(1 + log
(
Σz|xi

[j])− µ2
z|xi

[j]−Σz|xi
[j]
)

+
∑
j

∑
l

fj,l(zk|θs|z)
2σ2

l

(xi − µl), (14)

where we used the factorization of pθs|z(s|z) over voxels
from (2), and sample zk ∼ qφ(z|xi).

4.3. Inference and uncertainty

Given a new image x, we com-
pute ŝ = argmaxs pθ(s|x) by first obtaining µz using the
encoder encθz|x(x), and taking the maximum segmentation
at each voxel ŝ = argmaxs decθs|z (µz). The operations
are fast, since both are feed-forward neural networks.

This model also enables sampling segmentations con-
ditioned on a particular image and enables estimation of
uncertainty. Given an input image xi, we can create sam-
ples zk ∼ qφ(z|x) and sk ∼ pθs|z (s|zk), simulating dif-
ferent plausible segmentations for a given subject. We can
estimate the uncertainty of our segmentation given a new
image xi using

H(s[j]) = IE[− log(p(s[j]|xi))] (15)

= −
∑
l

p(δ(s[j] = l)|xi) log(p(δ(s[j] = l)|xi)).

4.4. Implementation

A CNN can be seen as a hierarchical function, a set of
concatenated functions, or layers. For example, CNNs often
map some input image x to an output probability ŝp:

ŝp = fL ◦ . . . ◦ f1(x), (16)

where ◦ denotes concatenation, f i is often some nonlin-
ear function such as a rectified linear unit or ReLU or max
pool [12] applied to (linear) convolutions of the output of
the previous layer f i−1 (with f0 = x).



T1w scan T2-FLAIR scan

Figure 3. Example T1w and T2-FLAIR images highlighting the
difference in anatomical differences, tissue contrast and scan qual-
ity.

Although we operate on 3D images, we use a 2D archi-
tecture in our experiments. We experimented with 3D archi-
tectures as well, but found little gain while facing significant
challenges related to tradeoffs and limitations between GPU
memory, batch size, the number of features, and the number
of labels possible. Each encoder consists of five downsam-
pling levels of one convolution layer each, with 3x3 convo-
lution kernels with elu activations, and 32 features for each
kernel. The final layer is dense, with 1000-long encoding of
the means and standard deviations representations.

The decoder is a mirror of this design, but upsamples in-
stead of downsampling and ends with a sigmoid activation.
In addition, we use a final layer that implements a pixel-
wise spatially-varying voxel-wise (location) prior ploc(s),
which is multiplied with dec(z) (in practice, we add the
logarithms). As is common in the atlas-based segmentation
literature, the prior ploc(s) was computed as the frequency
of labels in the held out prior dataset, in affine-normalized
coordinate system. This layer discourages any extreme de-
codings of z but does not capture shape properties, which is
encoded in dec(z).

We implement the normal probability p(x|s) with a
single-layer linear network. We also find it useful to pre-
train the image encoder using an image variational auto-
encoder similar to the segmentation one. The encoder
weights are used as initialization only. During training, we
used the Adadelta optimizer [36].

For the latent encoding layers representing µz and Σz ,
we introduce an activation function that discourages the
sample activations from being too large, helping limit nu-
merical issues stemming in sampling from these layers dur-
ing the reparametrization trick. We use concepts from
the softsign and tanh activations to define our function
as act(x) = softsignα(x) log(2 + α ∗ |x|).

5. Experiments
We demonstrate our model on two datasets. For the

first dataset, we obtain ground truth segmentations using a
specialized algorithm with intense computational require-
ments, combined with manual work and QC [9]. We use a
subset of these segmentations to learn the prior probability
parameters. We treat the rest of the dataset as unsupervised,
where we only use the ground truth segmentations as vali-
dation. For the second dataset we do not have ground truth,
offering a realistic scenario. Figure 3 shows example im-
ages from the two datasets, highlighting the difference, and
the difficulty of the task.

5.1. Data

T1w scan dataset

We gathered a large-scale multi-site, multi-study dataset of
more than 14,000 T1-weighted brain MRI scans from eight
publicly available datasets: including data from ADNI [25],
OASIS [20], ABIDE [7], ADHD200 [22], MCIC [11],
PPMI [21], HABS [6], and Harvard GSP [14]. Subject age
ranges, health states, and acquisition details vary with each
dataset, but all scans were resampled to a 256x256x256
grid with 1mm isotropic voxels, and all images cropped to
160x192x224 to eliminate entirely-background voxels.

We carry out standard pre-processing steps, includ-
ing affine spatial normalization using FreeSurfer for each
scan [9]. All MRIs were also segmented with FreeSurfer - a
task that takes several CPU hours per scan. We also applied
quality control (QC) using visual inspection to catch gross
errors in segmentation results.

We partitioned the data into a prior training subset of
5,000 images, where we only used the annotations. The rest
of the data was treated as an unannotated dataset, where
QCed segmentations were only used for validation.

While developing the network architectures we parti-
tioned the rest of the data into training, validation and test
sets. Once the architecture was fixed, we reported results on
the test dataset by training and evaluating the model in an
unsupervised fashion.

T2-FLAIR scan dataset

We also gathered a dataset of more than 3800 T2-FLAIR
scans, a significantly different MR modality, from the
ADNI cohort. These scans exhibit significantly different tis-
sue properties compared to the T1w images, lower acquisi-
tion quality, and exhibit 5mm slice spacing (Figure 3). They
provide a good test of our hypothesis that priors learned
are useful for segmenting image data with different tissue
properties. To our knowledge there is no automatic method
to obtain detailed anatomical segmentations for these im-
ages. We affinely align these images to the same space as
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Figure 4. T1 segmentation examples. For each subject, the left column shows the ”ground truth” as estimated with FreeSurfer, and the
right illustrates our prediction. The first row overlays anatomical structures on top of the subject scan to clearly indicate the proposed
segmentation. The second row shows outlines of each structure to allow comparison with the subject scan.

the T1 images using mutual information based registration
with ANTs [2]. We perform brain extraction using an in-
house developed neural network-based algorithm that uses
a UNet architecture and extensive data augmentation.

In the set of annotations that we used to train the prior,
we avoided including any annotations coming from subjects
whose T2-FLAIR scans are in this dataset.

5.2. Evaluation

We evaluate our results both visually and quantitatively.
For the T1w dataset, we use a volume overlap measure,
Dice, to quantify the automatic segmentation results [8]:

Dice(ŝ, st) =
2
∑
j δ(ŝ[j] = l)δ(st[j] = l)∑

j δ(ŝ[j] = l) +
∑
j δ(st[j] = l)

. (17)

where ŝ is the predicted segmentation map, and st indicates
the ground truth (FreeSurfer) label at each location. A Dice
score of 1 indicates perfect segmentation.

We experimented segmenting in the unsupervised setting
with standard UNet architectures, using the image MSE and
mutual information loss functions. Because of the many
structures that share similar intensities, these architectures
are not able to produce sensible segmentations that resem-
ble the correct segmentations, and we omit them from these
results. Classical unsupervised methods that include so-
phisticated prior anatomical information take a significant
amount time to run, and for T1w we regard FreeSurfer re-
sults as an optimistic bound for the T1w data. However,

as these methods tend to be focused on specific modalities,
there is no annotation tool for cortical and subcortical re-
gions in T2-FLAIR. We evaluate the T2-FLAIR segmenta-
tion visually in Figure 5.

5.3. Results

At test time, a new subject only needs to be affinely reg-
istered to a template, after which the proposed CNN model
evaluates a segmentation estimate. The entire process takes
less than a few seconds on an NVidia Titan X GPU.

Fig. 4 shows a series of example segmentations for the
T1w dataset demonstrating that our method is able to es-
timate anatomical structures, reproducing the general loca-
tion as well as the shape of structures. Fine details, such
as details of cortex folding, is not easily captured by the
prior encoding, leading to smooth segmentation predictions.
Fig. 6 illustrates the average Dice measure across several
anatomical regions for T1 scans. We focus on the most
prevalent (larger) structures, which can also be evaluated
in detail in the visualizations of Figure 4.

Fig. 5 demonstrates our algorithm on T2-FLAIR scans.
Even with the significantly lower image quality and differ-
ent tissue contrasts, our algorithm is able to produce visu-
ally sensible segmentations. Our method is able to utilize
the prior information to predict plausible segmentations,
even given challenging images in unsupervised scenarios.
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Figure 5. T2-FLAIR segmentation examples. The first column
overlays anatomical structures on top of the subject scan to clearly
indicate the proposed segmentation. The second column draws
outlines of each structure to allow comparison with the subject
scan. Different coronal slices illustrate the variability and diffi-
culty of the task.

5.4. Discussion

Our method is able to reproduce anatomical structures
that are guided by image contrast while respecting anatomi-
cal shapes according to the prior. Rapid, zero-shot segmen-
tation is a challenging task, and to the best of our knowl-
edge has not been tackled by previous methods. As such,
the absence of prior results makes it difficult to fully inter-
pret current results. The detailed FreeSurfer results are an
upper bound, which any model is unlikely to achieve in the
unsupervised setting. We omit showing results from lower
bound (simplistic) baselines, such as the unsupervised U-
Net model described above, since these models yielded non-

Figure 6. Volume Overlap measured via (Dice) for several struc-
tures in the T1w images.

sensical segmentations. To the best of our knowledge, our
results are the first for zero-shot neural-network based seg-
mentation of brain structures.

6. Conclusion
In this paper, we introduced a generative probabilistic

model that employs a prior model learned through a con-
volutional neural network to compute segmentations in an
unsupervised setting. We can interpret the anatomical prior
as encouraging the neural network to predicting segmen-
tation maps that come from a known distribution character-
ized by z while simultaneously producing images that agree
with the observed scan. We demonstrate that our model
enables segmentation using convolutional networks leading
to rapid inference in a setting where segmentation is tradi-
tionally not possible, or takes hours to obtain for a single
scan. The integration of priors promises to facilitate accu-
rate anatomical segmentation in a variety of novel clinical
problems with limited dataset availability.
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