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 59 

Abstract 60 

Macroscale white matter pathways form the infrastructure for large-scale communication in 61 

the human brain, a prerequisite for healthy brain function. Conversely, disruptions in the 62 

brain’s connectivity architecture are thought to play an important role in a wide range of 63 

psychiatric and neurological brain disorders. Here we show that especially connections 64 

important for global communication and network integration are involved in a wide range of 65 

brain disorders. We report on a meta-analytic connectome study comprising in total 895 66 

patients and 1,016 controls across twelve neurological and psychiatric disorders. We 67 

extracted disorder connectome fingerprints for each of these twelve disorders, which were 68 

then combined into a cross-disorder disconnectivity involvement map, representing the 69 

involvement of each brain pathway across brain disorders. Our findings show connections 70 

central to the brain’s infrastructure are disproportionally involved across a wide range of 71 

disorders. Connections critical for global network communication and integration display 72 

high disturbance across disorders, suggesting a general cross-disorder involvement and 73 

importance of these pathways in normal function. Taken together, our cross-disorder study 74 
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suggests a convergence of disconnectivity across disorders to a partially shared 75 

disconnectivity substrate of central connections.  76 

 77 

Background 78 

The macroscale connectome is the anatomical substrate for effective communication and 79 

integration of information between brain regions 1,2. Highly connected brain regions have a 80 

central role in this infrastructure forming a densely interconnected rich club core 4,5. This 81 

centralization of connectivity has been argued to provide several benefits for global neural 82 

integration 6–8 and with that healthy brain function 9,10. However, due to their central 83 

embedding in the network, hub regions and associated connections have also been suggested 84 

to be generally vulnerable to network disruption 11 and, as a result, disproportionally involved 85 

in a wide range of brain disorders 12. 86 

 87 

Disease-associated alterations in structural and functional brain connectivity have been 88 

observed across a wide range of neurological and psychiatric disorders 13,14. Potentially, these 89 

disconnectivity patterns converge across disorders to the hypothesized vulnerable substrate of 90 

central connections. Such convergence is further suggested by observations that multiple 91 

neuropsychiatric disorders involve overlapping neural circuits 15,16, share genetic risk factors 92 

17–19, and display high comorbidity 20 and shared brain phenotypes 16. However, so far, 93 

disease connectome studies have mostly been focused on single or small sets of disorders, 94 

and do not provide discriminative power to identify cross-disorder biological patterns of 95 

white matter disconnectivity 21,22. 96 

 97 

Combining diffusion MRI data from studies on psychiatric and neurological disorders 98 

provides new opportunities to assess the vulnerability of central connections in the human 99 
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brain. Here, we performed a cross-disorder data analysis, integrating connectivity alterations 100 

in a dataset comprising diffusion MRI data of in total 895 patients and 1,016 matched 101 

controls across twelve different brain disorders. These include eight psychiatric disorders 102 

(schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum 103 

disorder, major depressive disorder, obesity, obsessive-compulsive disorder, posttraumatic 104 

stress disorder) and four neurological disorders (Alzheimer’s disease and its prodromal stage 105 

known as mild cognitive impairment, amyotrophic lateral sclerosis and primary lateral 106 

sclerosis). By combining disconnectivity maps of these twelve brain disorders we constructed 107 

a ‘cross-disorder involvement map’, identifying the set of white matter pathways that show 108 

involvement in multiple brain disorders. We combine this cross-disorder map with results 109 

from network analysis of the human connectome and show that connections important for 110 

neural integration are disproportionally involved across a range of disease processes. 111 

 112 

Results 113 

Cross-disorder involvement map 114 

We examined MRI data of 2,681 patients and controls across twelve brain disorders from 115 

previously published studies and cohorts. Based on diffusion MRI data, white matter 116 

pathways were reconstructed in all subjects and combined with individual T1 data into 117 

connectome maps. Connectome maps were reconstructed according to a subdivision of the 118 

Desikan-Killiany atlas (DK-219). Results obtained using a second, different, parcellation of 119 

the Desikan-Killiany atlas (DK-114) are described below in the robustness analyses section. 120 

Quality control and patient-control matching was performed per study (see Methods) after 121 

which 895 patients and 1,016 matched controls were included for analysis. An overview of 122 

the demographics is provided in Figure 1 and Table 1. For each disorder, connectivity 123 

alterations were estimated in disconnectivity maps quantifying the differences in connectivity 124 
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strength (fractional anisotropy) between patients and controls. Disconnectivity maps were 125 

constructed per dataset to ensure patients and controls were matched and aggregated into 12 126 

disorders disconnectivity maps (Figure 2A). In each disorder, the top 15 % connections with 127 

highest disconnectivity effects were selected as disorder “involved”. A fixed number of 128 

connections was selected in each disorder to ensure equal presence of all disorders in the final 129 

cross-disorder involvement map.  130 

 131 

Combining all individual disease maps, a group cross-disorder involvement map was then 132 

formed by the percentage of disorders in which a connection was considered “disorder 133 

involved” (Figure 2B). Network based statistics showed significantly large subnetworks of 134 

connections with cross-disorder involvement above 35%, 40% and 45% (all p < 0.05, Figure 135 

SI 1). The largest subnetwork contained of 34 regions and 82 connections, including 136 

connections of the caudal anterior cingulate, caudal middle frontal, paracentral, posterior 137 

cingulate, precentral, precuneus, superior frontal and superior parietal regions (p = 0.0003, 138 

Figure 2E). Averaging cross-disorder involvement of adjacent connections to each region 139 

provided a measure of region-wise cross-disorder involvement (Figure 2D). Regions with 140 

significantly high cross-disorder involvement included sub-regions of the postcentral gyrus 141 

(´2.23 more than in permuted cross-disorder involvement maps, p = 0.0109, FDR-corrected) 142 

and precentral gyrus (´2.19 higher, p = 0.0109, FDR-corrected). 143 

 144 

Network measures 145 

Rich club organization 146 

The vulnerability of the central rich club connections to disease effects was tested with 147 

respect to a rich club core of hub regions identified as the top 15% highest degree regions in 148 

the reference connectome map (degree > 14, Figure SI 2). Based on the identified rich club 149 
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core, 7.6% of the network connections were classified as rich club connections, describing 150 

connections spanning between hub regions, 27.7% as feeder connections, describing 151 

connections spanning between hub and peripheral regions and 64.7% as local connections, 152 

describing connections between peripheral regions. Significant disproportional cross-disorder 153 

involvement was seen among rich club connections as compared to local connections (24% 154 

higher, p = 0.0041, Figure 3) and, to a lesser extent, as compared to feeder connections (17% 155 

higher, p = 0.0325). No specific increase was observed among feeder compared to local 156 

connections (p = 0.1209). 157 

 158 

Edge-wise centrality measures 159 

We investigated the vulnerability of central connections by examining the cross-disorder 160 

involvement of 25% most central connections identified by edge-wise centrality measures. 161 

The importance of connections for global network integration was measured by the edge-162 

betweenness centrality, counting the number of shortest topological paths through each 163 

connection. Connections with high betweenness centrality were significantly more often 164 

involved across disorders than in randomized cross-disorder involvement maps (27% higher, 165 

p = 0.0001, Figure 4). An extended definition of global network integration is given by 166 

network communicability which considers all possible walks between nodes in the network. 167 

Connections with large edge-removal effect on the network communicability also showed 168 

significantly higher cross-disorder involvement (12% higher, p = 0.0304), further suggesting 169 

disproportionally high cross-disorder effects in connections central for global 170 

communication. In contrast, connections with strong contribution to local network 171 

organization, measured by the network clustering coefficient, did not show a predisposition 172 

for cross-disorder involvement (p = 0.7330). Finally, cross-disorder involvement was 42% 173 
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increased among spatially long connections (>50 mm) in comparison with cross-disorder 174 

involvement maps with permuted disconnectivity effects (p < 0.0001). 175 

 176 

Global FA effects 177 

To verify independence of the association between network measures and cross-disorder 178 

involvement from global FA differences (as often reported in case-control studies 60,61), 179 

additional permutation testing was performed in which subject labels were permuted, with 180 

now, per disease and dataset, the global FA distribution in patient and control groups 181 

preserved. Connections with high betweenness centrality again showed significantly higher 182 

cross-disorder involvement (24% increase, p < 0.0001). Connections with high edge-removal 183 

effect on network communicability also showed significantly higher cross-disorder 184 

involvement (13% increase, p = 0.0092). Cross-disorder involvement was also higher among 185 

the spatially longest connections (>50 mm), with a 36% higher cross-disorder involvement as 186 

compared to short connections (<50 mm, p < 0.0001).  187 

 188 

Robustness analyses 189 

High rich club involvement was also observed when classification of rich club, feeder and 190 

local connections were based on a smaller (7% or 9% highest degree regions) or larger set of 191 

hub regions (18% or 25% highest degree regions). For all sets of hub regions, the associated 192 

rich club connections showed significantly higher cross-disorder involvement than the 193 

associated local connections (24% - 26% higher, all p < 0.05, Figure SI 3). Also, rich club 194 

connections showed significantly higher cross-disorder involvement compared to feeder 195 

connections (14% - 22% higher, all p < 0.05, Figure SI 3) when connection classes were 196 

based on a smaller (9%) or larger set of hub regions (18% or 25%). 197 

 198 
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The results obtained using central connections selected as the top 25% connections with 199 

highest edge-wise centrality scores showed exemplarily for a range of percentages (5% - 200 

45%) of central connections (Figure SI 4). Both smaller (10% and 15%) and larger sets (30% 201 

- 45%) of connections with high edge betweenness showed significantly higher cross-202 

disorder involvement than seen in randomized cross-disorder involvement maps (18% - 32% 203 

higher, all p < 0.05). For central connections identified by edge-removal effect on 204 

communicability, larger sets of central connections (30% - 45%) showed significantly higher 205 

cross-disorder involvement than in randomized cross-disorder involvement maps (11% - 12% 206 

higher, all p < 0.05). Connections selected by their spatial wiring length showed at all 207 

percentages (5% - 45%) significantly higher than expected cross-disorder involvement (25% 208 

- 61% higher, all p < 0.05). 209 

 210 

In each disorder, a fixed number of connections (15% of the connections in the reference 211 

connectome map) was selected as disorder involved to ensure equal contribution of all 212 

disorders to the cross-disorder involvement map. Validating the results obtained by selecting 213 

15% of the connections as disorder involved, showed similar results at other reasonable 214 

percentages of disorder involved connections (5%, 10%, 20% and 25%, Figure SI 5). Rich 215 

club connections showed significantly higher cross-disorder involvement compared with 216 

local connections at all percentages (13% - 37% higher, all p < 0.05). Compared with feeder 217 

connections, rich club connections showed significantly higher cross-disorder involvement at 218 

the strict 5% (32% higher, p = 0.0241) and 10% (24% higher, p = 0.0135) percentages. 219 

Moreover, significantly increased cross-disorder involvement was observed among central 220 

connections selected by edge betweenness (18% - 42% higher, all p < 0.05) and spatial 221 

wiring length (30% - 63% higher, all p < 0.05) at all percentages. Central connections 222 

selected by edge-removal effect on communicability showed significantly higher cross-223 
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disorder involvement, when selecting the stricter set of 10% of the connections as disorder 224 

involved (15% higher, p = 0.0288). 225 

 226 

To verify that the results were not driven by a single disorder, we performed a leave-one-out 227 

analysis in which all analyses were repeated leaving out one disorder at a time 228 

(Supplementary Materials). Results of the leave-one-out analysis showed in all iterations 229 

significantly higher cross-disorder involvement of rich club connections relative to local 230 

connections but not relative to feeder connections. The association between central 231 

connections selected by edge betweenness, edge-removal effect on communicability and 232 

spatial wiring length remained significant in all iterations (all p < 0.05, see Supplementary 233 

Materials). 234 

 235 

Using a second parcellation atlas, we further investigated cross-disorder involvement of 236 

connections (Supplementary Materials). First, repeating the analysis revealed a subnetwork 237 

of connections with increased cross-disorder involvement similar to the network reported in 238 

the main analysis (p = 0.0002). Second, testing the vulnerability of central connections 239 

confirmed the strong findings of the main text including: significantly higher cross-disorder 240 

involvement of rich club connections compared to local connections (p = 0.0207) and 241 

strongly elevated cross-disorder involvement was observed among connections with high 242 

betweenness scores (p = 0. 0018) and spatial wiring length (p = 0.0001). 243 

 244 

Discussion 245 

Our findings show that connections central to network integration and communication in the 246 

human brain are hotspots for white matter disconnectivity. Cross-disorder disconnectivity 247 

was examined in 895 patients and 1,016 matched controls across a range of twelve 248 
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psychiatric and neurological disorders. Our findings provide three lines of evidence that 249 

support a general vulnerability of central connections. 250 

 251 

First, rich club connections showed significantly higher cross-disorder involvement as 252 

compared to connections of peripheral regions (Figure 3). This observation is in line with 253 

studies showing the involvement of hub regions in specific disorders, such as schizophrenia 254 

62, autism spectrum disorder 63, ADHD 63, Huntington’s disease 64, Alzheimer’s disease  65–67, 255 

and general white matter lesions 68. High involvement of rich club connections across 256 

disorders is further in line with studies on cross-disorder gray matter abnormalities. A large 257 

voxel-based morphometry meta-analysis showed hub regions to be disproportionally 258 

involved in anatomical abnormalities across clinical brain disorders 12, findings verified by 259 

voxel-based morphometry meta-analysis across clinical psychiatric disorders, showing shared 260 

gray matter loss in in particular dorsal anterior cingulate and insula hub regions 15.  261 

 262 

Second, edgewise network measures revealed connections critical for network efficiency and 263 

communicability to display high cross-disorder involvement (Figure 4). This result extends 264 

earlier reported decreased efficiency of structural networks in for example depression 65 and 265 

in Alzheimer’s disease, schizophrenia, multiple sclerosis and ALS (see 22 for a review), 266 

suggesting that these effects are not disease-specific, but perhaps more general to brain 267 

disorders than previously reported. Furthermore, these results stress the hypothesized 268 

importance of efficient integration of information for healthy brain function 3, with 269 

disruptions in central connections potentially leading to disproportional effects in brain 270 

dysfunction.  271 

 272 
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A third line of evidence for the vulnerability of central connections is the observation of high 273 

cross-disorder involvement among connections spanning long physical distances (Figure 4). 274 

This observation is in line with studies reporting affected long fiber tracts including the 275 

superior and inferior longitudinal fasciculus in for example ADHD 69, ASD 70, OCD 71, and 276 

schizophrenia 72,73. Post-hoc analysis showed these effects to be reduced when restricting the 277 

analysis to intrahemispheric connectivity of either the left (19% increase, p = 0.0190) and 278 

right hemisphere (p = 0.0743 (n.s.)), suggesting high cross-disorder involvement of spatially 279 

long connections to be partly driven by a clustering of effects among interhemispheric 280 

connections. 281 

 282 

The observed cross-disorder effects are likely to reflect the combination of multiple disease 283 

mechanisms that differ across disorders 74,75. Central regions and connections have been 284 

argued to be biologically expensive, characterized by complex neuronal architecture 76, high 285 

metabolism 3 and high neuronal activity 77. This high biological cost might result in increased 286 

vulnerability to a wide range of disease processes, such as a toxic environment or reductions 287 

in the supply of oxygen or other metabolic resources 78. Central connections may also display 288 

a high cross-disorder involvement as the result of their topological centrality and associated 289 

risk to propagating disease processes 75,79. Connectome studies of disconnectivity in ALS 80, 290 

Alzheimer’s disease 79,81,82 and frontal temporal dementia 82 have suggested a prion-type of 291 

spread of disease processes in neurodegenerative disorders with specifically early disease 292 

involvement of hub regions and rich club connections due to their central embedding in the 293 

network. In addition to this, long-range central connections may be particularly vulnerable to 294 

focal white matter degeneration. The chance of focal degeneration is proportional to fiber 295 

length, making long-range central connections in total more vulnerable to general white 296 

matter atrophy as compared to short range connections. Rich club connections have also been 297 
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shown to display a prolonged development 83–85, which may further increase their general 298 

vulnerability by putting these connections at risk to late neurodevelopmental stress, substance 299 

use and dysregulation of hypothalamic-pituitary-adrenal axis function 74,86. The shared 300 

vulnerability of central connections across disorders might result from the importance of 301 

central connections for cognitive function 4,87. Cognitive impairment is shared across the 302 

symptomatology of many brain disorders 88. Hence, if in each disorder separately 303 

disconnectivity of central connections is associated with deficits in cognitive function, then 304 

such overlap in symptomatology would result in general vulnerability of central connections. 305 

 306 

Genetics and heritability studies offer the potential to gain further understanding in the 307 

pathology underlying cross-disorder disconnectivity. Shared genetic etiology is observed 308 

across many psychiatric and neurological disorders 17,89,90, with shared genetic risk factors 309 

providing converging evidence for common underlying biological processes across brain 310 

disorders 16,17,91. Further exploring structural disconnectivity and genetic information in a 311 

multi-modal and cross-disorder approach may further identify cross-disorder as well as 312 

disorder-specific biological pathways 16,92–94. 313 

 314 

The observation of overlapping disconnectivity patterns across brain disorders is in 315 

agreement with the hypothesis that brain disorders are interrelated 17 and prompts for a 316 

careful consideration of disease disconnectivity findings. Disconnectivity findings of single-317 

disorder connectome examinations may often be interpreted as disorder-specific 318 

disconnectivity effects, which might not fully be the case considering the demonstrated 319 

overlap in effects across disorders. This misattribution is perhaps most problematic in the 320 

development of biomarkers for brain disorders based on disconnectivity fingerprints, where it 321 

could result in overestimation of the disorder specificity of a presented biomarker.  322 
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 323 

Methodological issues have to be considered when interpreting our findings. While 324 

combining data from multiple studies may implicitly account for real-world heterogeneity 325 

and improve generalizability of observed results 95, it is likely that combining data from 326 

multiple studies may also reduce statistical power as a result of inter-study heterogeneity in 327 

diagnoses, demographics, scanner and MRI acquisition protocols. We are aware of this 328 

limitation and aimed to minimize the influence of study specific properties by directly 329 

comparing control and patient data within each study first, before combining information 330 

across the twelve disorders. Second, disorder disconnectivity fingerprints were based on 331 

structural brain networks obtained by diffusion-based MRI, with white matter microstructural 332 

integrity assessed by means of the metric of fractional anisotropy 47. Fractional anisotropy is 333 

however only an indirect marker of the micro-scale neuroarchitecture and diffusion weighted 334 

imaging has recognized limitations with respect to the reconstruction of complex fibers and 335 

connectome mapping 45,96,97, which might result in underestimation of disconnectivity effects 336 

within and across disorders. Third, our conclusions are based on effects seen across twelve 337 

disorders, and it remains unclear whether our conclusions could be generalized to an even 338 

wider range of brain disorders. To verify that the results were not driven by a single disorder, 339 

we performed a leave-one-out validation analysis in which all analyses were repeated leaving 340 

out one disorder at a time. Moreover, we possibly missed smaller sets of disorders that share 341 

disconnectivity patterns. Investigating potential clustering of disorders based on their 342 

disconnectivity patterns would be of great interest to further provide new insights in more 343 

detailed biological relationships between disorders. 344 

  345 

Our findings suggest shared connectome pathology across neurological and psychiatric 346 

disorders, with in particular high general vulnerability of connections central to neural 347 
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communication and integration. Beyond identifying cross-disorder disconnectivity, cross-348 

disorder examination has the important potential to show distinct disconnectivity patterns 349 

between disorders. Future examination into both disorder-shared and disorder-specific 350 

disconnectivity effects provides better understanding of which brain alterations are general 351 

and which effects are unique for brain disorders, providing new ways for the development of 352 

MRI based biomarkers for psychiatric and neurological disorders. 353 

 354 

Methods 355 

Studies and subjects 356 

Diffusion MRI data of 2,681 patients and controls of twelve disorders were included. Data 357 

included diffusion-weighted imaging (DWI) data of previously reported studies on 358 

schizophrenia (two datasets available, set I and II) 23,24, bipolar disorder 25, attention deficit 359 

hyperactivity disorder (ADHD) 26, autism spectrum disorder (ASD) 26, major depressive 360 

disorder (MDD) 27, obesity, obsessive-compulsive disorder (OCD) 28, posttraumatic stress 361 

disorder (PTSD, two datasets, set I and set II) (ADNI-DOD adni.loni.usc.edu and 29), and 362 

four neurological disorders, Alzheimer’s disease (AD, two datasets, set I and set II) (ADNI 363 

and  30,31), mild cognitive impairment (MCI, two datasets, set I and set II) (ADNI and 30,31), 364 

amyotrophic lateral sclerosis (ALS) 32–34 and primary lateral sclerosis (PLS) 32–34. Figure 1 365 

provides an overview of all data included and a summary is provided in Table 1. Further 366 

details including a description of MRI acquisition protocols and demographics are outlined in 367 

the Supplementary Materials. Within each dataset, patients and controls were matched on 368 

age, sex, scanner settings and where possible other demographics (procedure described in the 369 

Supplementary Materials). 370 

 371 

Data processing 372 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/360586doi: bioRxiv preprint first posted online Jul. 3, 2018; 

http://dx.doi.org/10.1101/360586
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

DWI Tractography. Data preprocessing of DWI and T1-weighted images of individuals 373 

included the following steps: the anatomical T1-weighted image was parcellated into 219 374 

distinct cortical regions (111 left-hemispheric and 108 right-hemispheric regions) according 375 

to a subdivision of FreeSurfer’s Desikan-Killiany atlas 35,36 using FreeSurfer 37. Using a 376 

second different parcellation of the Desikan-Killiany atlas (DK-114) showed similar results 377 

presented in the robustness analyses section and Supplemental Materials. Second, the 378 

individual parcellation map was co-registered to the DWI data using an affine transformation 379 

mapping of the T1-weighted image to the DWI image. Third, diffusion-weighted images 380 

were corrected for eddy current distortions and head motion using the FMRIB Software 381 

Library 38. If reversed phase encoding data was available (datasets listed in SI Table 1), 382 

susceptibility induced distortions were estimated and incorporated in the preprocessing 39. 383 

Fourth, a tensor was fitted to the diffusion signals in each voxel using a robust tensor fitting 384 

algorithm 40 and subsequently fractional anisotropy (FA) was derived 41. Given the mostly 385 

clinical diffusion MRI protocols used for data acquisition, simple deterministic tensor 386 

reconstruction (DTI) (as compared to more advanced diffusion profile reconstruction 387 

methods) was used to minimize the potential influence of false positives on network 388 

reconstruction and subsequent computation of network metrics 42–44. This relatively simple 389 

reconstruction of the diffusion signal is a limitation of our cross-disorder examination, 390 

potentially leading to incomplete reconstruction of complex fiber pathways and an 391 

underestimation of cross-disorder disease effects 45. Fifth, white matter pathways were 392 

reconstructed using fiber assignment by continuous tracking (FACT) 46, with streamline 393 

reconstruction starting from eight seeds in every cerebral white matter voxel. Fiber tracking 394 

was continued until a streamline showed high curvature (> 45º), exited the brain mask, or 395 

when a streamline entered a voxel with low fractional anisotropy (< 0.1). The mean FA value 396 
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of a streamline was computed as the weighted average FA value over all voxels that a 397 

streamline passed. 398 

 399 

Network reconstruction. For each individual dataset, reconstructed streamlines and cortical 400 

parcellation were combined into a weighted network. The 219 cortical areas were chosen as 401 

nodes in the network and two regions were considered connected if at least one reconstructed 402 

streamline was found to touch both cortical regions. The weight of connections was taken as 403 

the mean fractional anisotropy (FA) of streamlines involved 47.  404 

 405 

Cross-disorder analysis 406 

Cross-disorder examination of disorder-related disconnectivity was performed in two steps. 407 

Patient and control data were first compared within each dataset (in contrast to the alternative 408 

of pooling all data into one large dataset) to ensure that patients and controls were matched 409 

on age, sex and other demographics and scanner settings. This comparison provided for each 410 

disorder a disconnectivity map quantifying the differences in connectivity strength between 411 

patients and matched controls. Second, disorder disconnectivity maps were combined across 412 

the twelve disorders to determine the distribution of disconnectivity effects across network 413 

connections of the brain. This two-step approach optimized comparability of data across 414 

studies with different MRI acquisition protocols. In what follows, we describe this procedure 415 

in more detail, including the construction of the disorder disconnectivity maps and the cross-416 

disorder involvement map, followed by the performed statistical analyses. 417 

 418 

Step 1: Disorder disconnectivity map 419 

Per disorder, a disconnectivity map was constructed by assessing the between-group 420 

difference in FA of connections between patients and controls quantified by a Student’s t-test 421 
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statistic. As such, we tested for lowered FA connectivity strength in the patient group 422 

compared to the controls. Between-group analysis was performed for connections that were 423 

present in 30% or more of the population of controls and patients to ensure sufficient 424 

statistical power 33. To correct for possible differences in degrees of freedom across 425 

connections, t-test statistics were transformed to z-scores.  426 

For the disorders PTSD, schizophrenia, Alzheimer’s disease and MCI, for which 427 

multiple datasets were available, a disorder disconnectivity map was first calculated per 428 

dataset and then combined into an average disorder disconnectivity map using Stouffer’s 429 

method for combining independent tests by averaging the z-scores in the disorder 430 

disconnectivity maps across datasets 48,49.  431 

In total, this resulted in a disorder disconnectivity map for each of the 12 included 432 

brain disorders. Next, the top 15% connections with highest z-scores were selected as the set 433 

of most involved connections in that disorder, performing, per disorder, a proportional 434 

thresholding on the disorder-specific disconnectivity map with a density of 15% 50. Results 435 

using 5%, 10%, 20% or 25% involved connections are presented in the robustness analyses 436 

section. 437 

 438 

Step 2: Cross-disorder involvement map 439 

The twelve thresholded disorder disconnectivity maps were combined into a total cross-440 

disorder involvement map. To maximize comparability across studies and to avoid any 441 

potential bias to one of the included datasets, connection effects were included for those 442 

connections present in a reference group connectome map based on high-quality data of the 443 

Human Connectome Project (HCP, 500 Subjects Release of the Human Connectome Project) 444 

51,52 (see Supplementary Materials for details on the HCP group connectome reconstruction). 445 

Finally, a cross-disorder involvement map was formed by adding up all thresholded disorder 446 
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disconnectivity maps and dividing it by the number of disorders in which each connection 447 

was present, thus computing per connection the percentage of disorders in which this 448 

connection was involved. 449 

 450 

Network analysis 451 

The centrality of connections in the network structure was considered with respect to rich 452 

club organization, edgewise global and local network measures and physical wiring length. 453 

Metrics were computed on the HCP group connectome to ensure independence of the 454 

examined datasets.  455 

 Rich club organization. Central connections were identified with respect to the rich 456 

club organization describing the collective of high-degree hub regions 4. Regional degree was 457 

computed on the basis of the HCP group connectome with hub regions selected as regions 458 

with a degree above 14 (top 13% regions with the highest regional degree, 29 regions, Figure 459 

3, listed in SI Table 2). This set of regions was verified to display a rich club organization, 460 

showing a higher-than-expected level of interconnectivity (p < 0.0001, compared with 10,000 461 

degree-preserved rewired networks using permutation testing).  462 

Based on the identified rich club organization, network connections were classified 463 

into rich club connections, describing connections spanning between hub regions, feeder 464 

connections, describing connections spanning between hub and peripheral regions, or local 465 

connections, describing connections between peripheral regions 6. Analyses were repeated 466 

with connections classes derived from a smaller and larger set of hub regions (top 7% highest 467 

degree regions, degree > 16; top 9% highest degree regions, degree > 15; top 18% highest 468 

degree regions, degree > 13 and top 25% highest degree regions, degree > 12). 469 

Global network organization. Global network integration was examined from the 470 

perspective of the ease of communication between nodes in the network. First, the centrality 471 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/360586doi: bioRxiv preprint first posted online Jul. 3, 2018; 

http://dx.doi.org/10.1101/360586
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

of connections with respect to the shortest topological paths in the network was measured by 472 

counting the number of shortest topological paths through each network connection using the 473 

metric of edge betweenness 53. Second, network integration was considered by examining the 474 

metric of network communicability, measuring all possible walks between nodes 54. The 475 

contribution of connections to communicability was assessed by edge-removal statistics 55–57. 476 

Removal-effect of each connection on network communicability was quantified as the 477 

difference (in terms of percentage) between the network communicability before and after 478 

removal of a connection. 479 

Local network organization. The role of network connections in local network 480 

organization was assessed through the contribution of each connection to network clustering 481 

53. The removal-effect of each connection on global network clustering was quantified as the 482 

difference (i.e., percentage of change) in global clustering before and after removal of the 483 

connection.  484 

Spatial embedding. Projection length of each connection was calculated as the 485 

average physical length of a connection. 486 

 487 

Statistical analysis 488 

Cross-disorder involvement. Significant subnetworks in the brain with increased cross-489 

disorder involvement levels were identified using Network Based Statistics 59. The cross-490 

disorder involvement map was binarized by including connections with cross-disorder 491 

involvement percentages above a specified NBS-threshold. Multiple NBS-thresholds (0%, 492 

5%, …, 100%) were considered, capturing the trade-off between specificity and sensitivity of 493 

the NBS-analysis. The number of connections in the greatest component of the thresholded 494 

network was counted. Significance of this cluster was assessed using permutation testing by 495 

comparison with the distribution of greatest component sizes in a null condition in which 496 
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disease effects were randomized. For this, for each permutation, a cross-disorder involvement 497 

map was calculated on a permuted subject sample in which subject labels (i.e. controls and 498 

patients) were randomly reassigned (keeping patient and control group sizes intact). 10,000 499 

permutations were examined and the percentage of the permutations in which the greatest 500 

component was larger or equal to the observed greatest component was assigned as p-value 501 

to the observed cross-disorder involvement. Regions with significantly high cross-disorder 502 

involvement were similarly identified by comparison with the sample of subject-label 503 

permuted cross-disorder involvement maps. To correct for multiple testing, p-values were 504 

adjusted by the false discovery rate correction procedure 58. 505 

 506 

Network measures. Differences in mean cross-disorder involvement between rich club 507 

and feeder, rich club and local, and feeder and local connection classes were statistically 508 

assessed using permutation testing (10,000 permutations). In each permutation, connection 509 

class labels were randomly shuffled and mean cross-disorder involvement of the classes was 510 

computed over the permuted connections. Differences in cross-disorder involvement between 511 

connection classes were computed for all permutations. The observed difference in cross-512 

disorder involvement between two connection classes was assigned a p-value by computing 513 

the percentage of permutations in which the difference between the two connection classes 514 

was equal to or exceeded the observed difference. 515 

The 25% connections most central connections selected by global network 516 

integration, local network integration and the spatial embedding were examined. Exploring 517 

other reasonable percentages (5%, 10%, …, 45%) for selecting central connections showed 518 

consistent results that are reported in the robustness analyses. Cross-disorder involvement 519 

levels were compared with the levels expected when disconnectivity was randomly 520 

distributed using permutation testing, this to verify independence of our results from 521 
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connection properties such as connection prevalence or group-average connection strength. 522 

For each permutation, subject labels were randomly reassigned and cross-disorder 523 

involvement maps were calculated using the permuted subject-labeling. 10,000 permutations 524 

were computed and cross-disorder involvement levels of the subsets of central connections 525 

were calculated for each permutation. Based on this null distribution, the original effect was 526 

assigned a p-value as the percentage of permutations in which the cross-disorder involvement 527 

was equal to or exceeded the observed cross-disorder involvement.  528 

 529 

Global FA effects 530 

Additional permutation testing was performed to verify independence of our results from 531 

global FA differences that are often reported in case-control studies60,61. For each subject, 532 

global FA was computed as the total FA strength of all connections. Next, subjects were 533 

classified into ten global FA groups, group one with global FA in the interval [0, 0.1), group 534 

two with global FA in the interval [0.1, 0.2), etc. For permutation testing, subject labels were 535 

permuted within datasets, but now under the constraint of only allowing switching patient 536 

and control labels of subjects assigned to the same global FA bin. As such, the resulting 537 

global FA distribution of permuted patient and control groups was kept similar to the original 538 

global FA distributions (and therewith also potential between-group differences in global 539 

FA). 10,000 permutations were computed and, in each permutation, the cross-disorder 540 

involvement of the subsets of connections was calculated. Observed effects were assigned a 541 

p-value as the percentage of the permutations in which the measured effect was equal to or 542 

exceeded the observed effect. 543 

 544 

 545 
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 576 

Figures 577 

Figure 1. Demographics. Age distribution of controls (top) and patients (bottom) for all 578 

twelve examined disorders. Age ranged between 6 – 90 years. Controls and patients within 579 

datasets were matched on age and gender. 580 

 581 

Figure 2. Cross-disorder involvement. (A) Overview of data aggregation and analysis. Per 582 

disorder, a connection-wise disorder-specific disconnectivity map was computed contrasting 583 

the fractional anisotropy of connections in patients and matched controls. Disorder-specific 584 

disconnectivity maps were combined to determine the disconnectivity distribution across 585 

disorders. (B) Schematic representation of human reference connectome with connections 586 

colored by cross-disorder involvement. (C) Superior (left panel) frontal (right-top panel) and 587 

medial (right-bottom panel) view of brain connectivity colored by cross-disorder 588 

involvement. (D) Lateral and medial view of left and right hemispheres showing region-wise 589 

cross-disorder involvement. (E) Network including 34 regions (colored blue) that showed 590 

significant involvement across disorders (NBS analysis, p = 0.0003). 591 

 592 

Figure 3. Rich club organization. (A) Cross-disorder involvement of rich club connections 593 

was significantly 24% higher as compared to the set of local connections (p = 0.0041) and 594 

17% higher than observed in the set of feeder connections (p = 0.0325). Error bars mark the 595 

standard deviation. (B) Hub regions (top 13% highest degree regions, 29 regions) are colored 596 
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in red. (C) Schematic representation of human reference connectome with rich club 597 

connections (colored red), feeder connections (orange) and local connections (yellow).  598 

 599 

Figure 4. Edgewise network measures. From left to right, average cross-disorder 600 

involvement of connections with highest edge betweenness centrality (top 25% shown), 601 

highest edge-removal effect on communicability, highest edge removal effect on clustering 602 

and long-distance connections. Observed values (blue) were compared with average cross-603 

disorder involvement in subject-label permuted maps (grey). Connections important for 604 

global topological (edge betweenness centrality, and communicability) and spatial (long-605 

distance connections) integration showed significantly higher cross-disorder involvement 606 

levels than expected for randomly distributed disease effects (indicated by an asterisk *, p < 607 

0.05). 608 

 609 

Figure SI 1. Subnetworks identified by network based statistics. (A) Number of regions 610 

in the greatest component in thresholded version of the cross-disorder involvement map 611 

across a range of thresholds (0% - 100% cross-disorder involvement). The greatest 612 

components ranged from including all regions (at 0% cross-disorder involvement threshold) 613 

to including only one region (at 100% cross-disorder involvement threshold). At 35%, 40% 614 

and 45% cross-disorder involvement thresholds, the identified subnetwork showed 615 

significantly larger than subnetwork seen in subject-label permuted cross-disorder 616 

involvement maps (indicated by an asterisk *, p < 0.05). (B) Subnetworks and included 617 

regions (in blue) of the three identified significantly large subnetworks. 618 

 619 
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Figure SI 2. Rich club coefficient in reference connectome. Reference connectome data 620 

showed a significant rich club organization at all degree levels above 8 (indicated by an 621 

asterisk *, p < 0.05, FDR-corrected). 622 

 623 

Figure SI 3. Rich club organization across percentages of hub regions. Ratio between 624 

cross-disorder involvement of rich club and local connections (left) and feeder connections 625 

(right). The ratios were evaluated for rich club, feeder and local connections derived from 626 

sets of hub regions selected at different percentages (7%, degree > 16; 9%, degree > 15; 13%, 627 

degree > 14; 18%, degree > 13; 25%, degree > 12). Percentages at which the ratio was 628 

significantly large (i.e. significant differences in cross-disorder involvement of rich club 629 

connections and feeder or local connections) are indicated by an asterisk * (p < 0.05). 630 

 631 

Figure SI 4. Edgewise network measures across percentages of central connections. The 632 

cross-disorder involvement of central connections (selected by edge betweenness (left), edge-633 

removal effect on communicability (middle) and spatial wiring length (right)) relative to 634 

cross-disorder involvement observed in subject-label permuted cross-disorder involvement 635 

maps. The relative cross-disorder involvement was obtained at different selection percentages 636 

ranging from considering the top 5% most central connections to the top 45% most central 637 

connections. Percentages at which the ratio was significantly high (i.e. the set of central 638 

connections showed significantly higher cross-disorder involvement than in permuted cross-639 

disorder involvement maps) are indicated by an asterisk * (p < 0.05). 640 

 641 

Figure SI 5. Cross-disorder involvement of central connections across percentages of 642 

disorder involved connections. Results were computed across various percentages of 643 

connections selected as disorder involved in addition to the 15% percentage used in the main 644 
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analysis. (A) The ratio in cross-disorder involvement between rich club and local (left) and 645 

feeder (right) connections. (B) The relative cross-disorder involvement of central connections 646 

compared with subject-label permuted cross-disorder involvement maps. Significant effects 647 

are indicated by an asterisk * (p < 0.05). 648 

 649 

Table 1. Demographics after data quality control and matching.  650 

 651 

SI Table 1. Acquisition parameters of included datasets. 652 

 653 

SI Table 2. Number of excluded subjects (because subjects miss information, subjects are 654 

considered outlier, or subjects are not matched) per dataset. 655 

 656 

SI Table 3. List of hub regions (region subnumbers are study specific). 657 

 658 
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Figure 1. Demographics. Age distribution of controls (top) and patients (bottom) for all twelve 
examined disorders. Age ranged between 6 – 90 years. Controls and patients within datasets 
were matched on age and gender.
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Figure 2. Cross-disorder involvement. (A) Overview of data aggregation and analysis. Per 
disorder, a connection-wise disorder-specific disconnectivity map was computed contrasting 
the fractional anisotropy of connections in patients and matched controls. Disorder-specific 
disconnectivity maps were combined to determine the disconnectivity distribution across disor-
ders. (B) Schematic representation of human reference connectome with connections colored 
by cross-disorder involvement. (C) Superior (left panel) frontal (right-top panel) and medial 
(right-bottom panel) view of brain connectivity colored by cross-disorder involvement. (D) 
Lateral and medial view of left and right hemispheres showing region-wise cross-disorder 
involvement. (E) Network including 34 regions (colored blue) that showed significant involve-
ment across disorders (NBS analysis, p = 0.0003).
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Figure 3. Rich club organization. (A) Cross-disorder involvement of rich club connections 
was significantly 24% higher as compared to the set of local connections (p = 0.0048) and 
17% higher than observed in the set of feeder connections (p = 0.0328). Error bars mark the 
standard deviation. (B) Hub regions (top 15% highest degree regions, 29 regions) are colored 
in red. (C) Schematic representation of human reference connectome with rich club connec-
tions (colored red), feeder connections (orange) and local connections (yellow). 
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Figure 4. Edgewise network measures. From left to right, average cross-disorder involve-
ment of connections with highest edge betweenness centrality (top 25% shown), highest 
edge-removal effect on communicability, highest edge removal effect on clustering and 
long-distance connections. Observed values (blue) were compared with average cross-disor-
der involvement in subject-label permuted maps (grey). Connections important for global 
topological (edge betweenness centrality, and communicability) and spatial (long-distance 
connections) integration showed significantly higher cross-disorder involvement levels than 
expected for randomly distributed disease effects (indicated by an asterisk *, p < 0.05).
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Table 1. Demographics after data quality control and matching.  
   

Age Sex  

Disease Nr. con. Nr. pat. Con. mean 
(SD) 

Pat. mean 
(SD) 

P-value Con. male/female 
(%/%) 

Pat. male/female 
(%/%) 

P-value References 

ADHD 14 33 12.07 (2.48) 11.15 (2.54) 0.27 13/1 (92.9/.7.1) 27/6 (81.8/.18.2) 0.33 
1 

ALS 45 45 50.99 (19.10) 51.98 (15.98) 0.79 37/8 (82.2/.17.8) 33/12 (73.3/.26.7) 0.31 
2–4 

MCI I 28 28 57.89 (12.22) 62.79 (7.81) 0.09 15/13 (53.6/.46.4) 19/9 (67.9/.32.1) 0.27 
5 

MCI II 17 95 72.80 (6.74) 72.48 (7.22) 0.87 8/8 (50.0/.50.0) 56/33 (62.9/.37.1) 0.33 ADNI 
OCD 41 36 31.71 (8.27) 31.50 (9.40) 0.92 18/23 (43.9/.56.1) 14/22 (38.9/.61.1) 0.66 

6 
PLS 32 32 59.18 (14.60) 59.93 (9.70) 0.81 19/13 (59.4/.40.6) 17/15 (53.1/.46.9) 0.61 

2–4 
PTSD I 25 45 36.92 (10.61) 37.98 (9.31)  0.67 25/0 (100.0/.0.0) 45/0 (100.0/.0.0) 1.00 

7 
PTSD II 

40 40 69.86 (4.50) 68.04 (3.86) 0.06 40/0 (100.0/.0.0) 40/0 (100.0/.0.0) 1.00 
DOD 
ADNI 

Alzheimer’s I 19 19 62.26 (7.45) 65.89 (5.75) 0.11 8/11 (42.1/.57.9) 11/8 (57.9/.42.1) 0.33 
5,8 

Alzheimer’s II 16 37 72.24 (4.54) 75.04 (8.80) 0.24 5/8 (38.5/.61.5) 21/14 (60.0/.40.0) 0.18 ADNI 
ASD 17 32 12.72 (1.84) 12.10 (2.48) 0.38 15/2 (88.2/.11.8) 27/5 (84.4/.15.6) 0.71 

1 
Bipolar disorder 82 82 45.18 (14.62) 45.86 (13.41) 0.76 42/40 (51.2/.48.8) 49/33 (59.8/.40.2) 0.27 

9 
MDD 478 211 37.19 (11.76) 36.93 (12.15) 0.79 210/268 (43.9/.56.1) 104/107 (49.3/.50.7) 0.19 

10 
Obesity 32 30 23.53 (8.66) 26.80 (10.72) 0.20 15/17 (46.9/.53.1) 10/20 (33.3/.66.7) 0.28 

11 
schizophrenia I 107 107 29.62 (7.54) 29.48 (7.38) 0.89 71/34 (67.6/.32.4) 83/24 (77.6/.22.4) 0.10 

12 
schizophrenia II 23 23 31.46 (7.36) 31.54 (3.23) 0.96 17/6 (73.9/.26.1) 18/5 (78.3/.21.7) 0.73 
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