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Abstract

By providing a simple and efficient way of computing low-variance gradients of
continuous random variables, the reparameterization trick has become the technique
of choice for training a variety of latent variable models. However, it is not
applicable to a number of important continuous distributions. We introduce an
alternative approach to computing reparameterization gradients based on implicit
differentiation and demonstrate its broader applicability by applying it to Gamma,
Beta, Dirichlet, and von Mises distributions, which cannot be used with the classic
reparameterization trick. Our experiments show that the proposed approach is faster
and more accurate than the existing gradient estimators for these distributions.

1 Introduction

Pathwise gradient estimators are a core tool for stochastic estimation in machine learning and
statistics [10} [13} 22, 37 |45]]. In machine learning, we now commonly introduce these estimators
using the “reparameterization trick”, in which we replace a probability distribution with an equivalent
parameterization of it, using a deterministic and differentiable transformation of some fixed base
distribution. This reparameterization is a powerful tool for learning because it makes backpropagation
possible in computation graphs with certain types of continuous random variables, e.g. with Normal,
Logistic, or Concrete distributions [21} 26]]. Many of the recent advances in machine learning are
possible only because of this ability for backpropagation through stochastic nodes. They include
variational autoenecoders (VAEs), automatic variational inference [22, [24] 37|, Bayesian learning in
neural networks [6,|12], and principled regularization in deep networks [/11}30].

The reparameterization trick is easily used with distributions that have location-scale parameteriza-
tions or tractable inverse cumulative distribution functions (CDFs), or are expressible as deterministic
transformations of such distributions. These seemingly modest requirements are still fairly restrictive
as they preclude a number of standard distributions, such as truncated, mixture, Gamma, Beta,
Dirichlet, or von Mises, from being used with reparameterization gradients. This paper provides a
general tool for reparameterization in these important cases.

The limited applicability of reparameterization has often been addressed by using a different class
of gradient estimators, the score-function estimators [[10} |14} 47]]. While being more general, they
typically result in high-variance gradients which require problem-specific variance reduction tech-
niques to be practical. Generalized reparameterizations involve combining the reparameterization
and score-function estimators [32} 38|]. Another approach is to approximate the intractable derivative
of the inverse CDF [23]].

Following Graves [[15]], we use implicit differentiation to differentiate the CDF rather than its inverse.
While the method of Graves [|15] is only practical for distributions with analytically tractable CDFs
and has been used solely with mixture distributions, we leverage automatic differentiation to handle
distributions with numerically tractable CDFs, such as Gamma and von Mises. We review the
standard reparameterization trick in Section [2]and then make the following contributions:
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o We develop implicit reparameterization gradients that provide unbiased estimators for continuous
distributions with numerically tractable CDFs. This allows many other important distributions to
be used as easily as the Normal distribution in stochastic computation graphs.

o We show that the proposed gradients are both faster and more accurate than alternative approaches.

o We demonstrate that our method can outperform existing stochastic variational methods at training
the Latent Dirichlet Allocation topic model in a black-box fashion using amortized inference.

e We use implicit reparameterization gradients to train VAEs with Gamma, Beta, and von Mises
latent variables instead of the usual Normal variables, leading to latent spaces with interesting
alternative topologies.

2 Background

2.1 Explicit reparameterization gradients

We start with a review of the original formulation of reparameterization gradients [22} |37} 45]], which
we will refer to as explicit reparameterization. Suppose we would like to optimize an expectation
Eq,(2) [f(2)] of some continuously differentiable function f(z) w.r.t. to the parameters ¢ of the
distribution. We assume that we can find a standardization function Sg(z) that when applied to a
sample from g, (z) removes its dependence on the parameters of the distribution. The standardization
function should be continuously differentiable w.r.t. to its argument and parameters, and invertible:

Sp(z) =e~qle) z=585"(e). (1)

For example, for Gaussian distribution N'(p1, o) we can use S, ,(z) = (z — p) /o ~ N(0,1). We
can then express the objective as an expectation w.r.t. €, transferring the dependence on ¢ into f:

Ego() [f(2)] = Eue) [ 1557 ())] @

This allows us to compute the gradient of the expectation as the expectation of the gradients:

Vo Bgya) [F(2)] = Eqe) [V (S51(6)] = Eye) [VaF (S5 )V6S; @) . @

A standardization function Sy (z) satisfying the requirements exists for a wide range of continuous
distributions, but it is not always practical to take advantage of this. For instance, the CDF F'(z|¢)
of a univariate distribution provides such a function, mapping samples from it to samples from the
uniform distribution over [0, 1]. However, inverting the CDF is often complicated and expensive, and
computing its derivative is even harder.

2.2 Stochastic variational inference

Stochastic variational inference [[17]] for latent variable models is perhaps the most popular use case
for the reparameterization gradients. Consider a model pg(z) = [ pg(x|2)p(z)dz, where x is
an observation, z € RP is a vector-valued latent variable, pg(|z) is the likelihood function with
parameters 6, and p(z) is the prior distribution. Except for a few special cases, maximum likelihood
learning in such models is intractable because of the difficulty of the integrals involved. Variational
inference [20] provides a tractable alternative by introducing a variational posterior distribution
¢¢(z|x) and maximizing a lower bound on the marginal log-likelihood:

L(x,0,¢) = Ey, (2|2 [logpe(z|2)] — KL(g(2|x)|p(2)) < logpe(z). ()

Training models with modern stochastic variational inference [22| [35] involves gradient-based
optimization of the bound w.r.t. the model parameters 8 and the variational posterior parameters ¢.
While the KL-divergence term and its gradients can often be computed analytically, the remaining
term and its gradients are typically intractable and are approximated using samples from the variational
posterior. The most general form of this approach involves score-function gradient estimators [29} 35|
36] that handle both discrete and continuous latent variables but have relatively high variance. The
reparameterization trick usually provides a lower variance gradient estimator and is easier to use, but
due to the limitations discussed above, is not applicable to many important continuous distributions.



3 Implicit reparameterization gradients

We propose an alternative way of computing the reparameterization gradient that avoids the inversion
of the standardization function. We start from eqn. (3)) and perform a change of variable z = S(;l (e):

V¢ Eq¢ (2) [f( )] = Eq¢(z) [sz(z)V¢z] ; V¢Z = V¢Sd:1(8)|€:5¢(z). 5)
Our key insight is that we can compute V 4z by implicit differentiation. Indeed, taking the gradient
V 4 and applying the chain rule to the equality Sg,(2) = € we have V,S¢(2)Vgz + VgSes(z) = 0.
Solving this equation for V 4z yields

Vez = —(V2Sp(2)) ' VpSe(2) (6)

This expression for the gradient only requires differentiating the standardization function and not
inverting it. Note that its value does not change under any invertible transformation 7'(g) of the
standardization function, since the corresponding Jacobian V.T'(¢) cancels out with the inverse.

Example: univariate Normal distribution N (11, 02). We illustrate that explicit and implicit repa-

rameterizations give identical results. A standardization function is given by S, »(2) = (2 — ) /o =
e ~ N(0,1). Explicit reparameterization inverts this function: z = S, 1(¢) = pu + oe, g—i =
dz

1, § = e. The implicit reparameterization, eqn. (6), gives:

dSu.0(2)

dS, -(z z—
dz 77;571 dp | B =,y o
dp = G LT o Se@ L g

The expressions are equivalent, but the implicit version avoids inverting S, »(z).

Universal standardization function. For univariate distributions, a standardization function is given
by the CDF: Sy(2) = F'(2|¢) ~ Uniform(0, 1). Assuming that the CDF is strictly monotonic and
continuously differentiable w.r.t. z and ¢, it satisfies the requirements for a standardization function.
Plugging this function into (6), we have

Vgr = — Vol'(2l¢) @)

4 (2)
Therefore, computing the implicit gradient only requires differentiating the CDF. In the multivariate
case, we can perform the multivariate distributional transform [39]:

Sp(z) = (F(21|9), F (22|21, ), ..., F(zplz1, ..., 2p-1,9)) = u, ©

where g(u) = ngl Uniform(ug|0,1). Eqn. (6) requires computing the gradient of the (conditional)
CDFs and solving a linear system with matrix V.S (2). If the distribution is factorized, the matrix
is diagonal and the system can be solved in O(D). Otherwise, the matrix is triangular because each
CDF depends only on the preceding elements, and the system is solvable in O(D?).

Algorithm. We present the comparison between the standard explicit and the proposed implicit
reparameterization in Table [I] Samples of z in implicit reparameterization can be obtained with
any suitable method, such as rejection sampling [9]]. The required gradients of the standardization
function can be computed either analytically or using automatic differentiation.

Table 1: Comparison of the two reparameterization types. While they provide the same result, the
implicit version is easier to implement for distributions such as Gamma because it does not require
inverting the standardization function Sg(2).

Explicit reparameterization Implicit reparameterization (proposed)
Forward pass Sample & Ailq(s) Sample z ~ ¢(z[¢)

Setz « Sy ()
Backward pass Set Vgz < V¢S;1(E) Set Vpz  —(V284(2)) 'V pSe(2)

Set Vg f(2) < Vo f(2)Vez SetVef(z) sz(z)V¢z




4 Applications of implicit reparameterization gradients

We now demonstrate how implicit reparameterization can be applied to a variety of distributions.

Our strategy is to provide a computation method for a standardization function, such as CDF or

multivariate distributional transform, and its gradients.

Truncated univariate distribution. A truncated distribution is obtained by restricting a distribution’s

domain to the range [a, b]. Its CDF can be computed from the CDF of the original distribution:
F(z|¢,a,b) = %7 z € [a,b]. Assuming that the gradient V4 F(z|¢) is available, we

can easily compute the implicit gradient for the truncated distribution.

Mixture distribution p(z|¢) = Zl Lwip(z|@;), where ¢ = (¢1,..., ¢, w1,...,wk). In

the univariate case, the CDF of the mixture is simply Z _, wiF(z|¢;). In the multivariate case,

the distributional transform is given by F'(zq|z1, ..., 24-1, @) = Zfil wiF (24|21, 2d—1, Pi),
where w§ = <z (z1.--2a-1161) __ ¢ the posterior weight for the mixture component after observing

S wip(a1,za—1]¢;)
the first d — 1 dimensions of the sample. The required gradient can be obtained via automatic
differentiation. When the mixture components are fully factorized, we obtain the same result as [|15]],
but in a simpler form, due to automatic differentiation and the explicitly specified linear system.

Gamma distribution Gamma(c, 3) with shape o > 0 and rate 8 > 0. The rate can be standardized
using the scaling property: if z ~ Gamma(a, 1), then z/5 ~ Gamma(cq, ). For the shape
parameter, the CDF of the Gamma distribution with shape « and unit rate is the regularized incomplete
Gamma function y(z, «) that does not have an analytic expression. Following Moore [31]], we propose
to apply forward-mode automatic differentiation [1]] to a numerical method [2] that computes its

value. This provides the derivative dV(Z ) for roughly twice the cost of computing the CDF.

Student’s t-distribution samples can be derived from samples of Gamma. Indeed, if o ~
Gamma(%, ¥), then z ~ N(0,0?) is t-distributed with v degrees of freedom.

Beta and Dirichlet distribution samples can also be obtained from samples of Gamma. If

z1 ~ Gamma(a,1) and z3 ~ Gamma(3,1), then P lied Beta(a, 8). Similarly, if z; ~

Gamma(a;, 1), then ( Dzl e D z) ~ Dirichlet(av, ..., ap).
J j=17%j

Von Mises distribution [27, 28] is a maximum entropy distribution on a circle with the density

W, where p is the location parameter, x > 0 is the

concentration, and Iy(k) is the modified Bessel function of the first kind. The location parameter
u can be standardized by noting that if z ~ vonMises(0, ) then z + p ~ vonMises(u, ). For the
concentration parameter <, we propose to use implicit reparameterization by performing forward-
mode automatic differentiation of an efficient numerical method [[16] for computation of the CDF.

function vonMises(z|u, k) =

4.1 Accuracy and speed of reparameterization gradient estimators

Implicit reparameterization requires differentiating the CDF w.r.t. its parameters. When this operation
is analytically intractable, e.g. for Gamma and von Mises distributions, we estimate it via forward-
mode differentiation of the code that numerically evaluates the CDF. We implement this approach by
manually performing the required modifications of the C++ code (see Appendix [B). An alternative is

to use a central finite difference approximation of the derivative: % fl;“b) ~ Flzlo(+6 ))2;5 (z]¢(1=9))

where 0 < § < 1 is the relative step size that we choose via grid search. For the Gamma distribution,
we also compare to the estimator of Knowles [23]] that performs explicit reparameterization by
approximately computing the derivative of the inverse CDF. The ground truth value of the CDF
derivative is computed in a computationally expensive but accurate way (see Appendix[C). The results
in Table 2] suggest that the automatic differentiation approach provides the highest accuracy and speed.
The finite difference method can be easier to implement if a CDF computation method is available,
but requires computation in float64 to obtain the f1oat32 precision. This can be problematic for
devices such as GPUs and other accelerators that do not support fast high-precision computation. The
approach of Knowles is slower and significantly less accurate due to the approximations of the inverse
CDF derivative computation method. In the remaining experiments we use automatic differentiation
and £loat32 precision.




Table 2: Average error and time (measured in seconds per element) of the reparameterization gradient
computation methods. Automatic differentiation achieves the lowest error and the highest speed.

Gamma Von Mises
Method Precision Mean abs. error Time (s) Mean abs. error Time (s)
Automatic differentiation floatsy 23 X 107% 3.2x1077 19x1077 3.1x10°7
Finite difference 3.2x 1073 3.7x 1077 9.6 x 107° 3.8x 1077
Automatic differentiation 5.4 x 1071 4.0 x 107 1.3x10~'?® 3.7x10°7
Finite difference float64 3.5%x107° 6.7 x 1077 1.1 x 10710 59 x 1077
Knowles [23] 6.5 x 1073 3.9 x 107° - -

5 Related work

Surrogate distributions. When explicit reparameterization is not feasible, it is often possible to
modify the model to use alternative distributions that are reparameterizable. This is a popular approach
due to is simplicity. Kucukelbir et al. [24] approximate posterior distributions by a deterministic
transformation of Normal samples; Nalisnick et al. [33]] and Nalisnick and Smyth [34] replace Beta
distributions with Kumaraswamy distributions in the Dirichlet Process stick-breaking construction;
Zhang et al. [48]] substitute the Gamma distribution for a Weibull distribution; Srivastava and Sutton
[41},142] replace the Dirichlet distribution with a Logistic Normal. Surrogate distributions however do
not always have all the desirable properties of the distributions they replace. For example, as noted
by Ruiz et al. [38]] such surrogate distributions struggle to capture sparsity, which is achievable with
Gamma and Dirichlet distributions.

Implicit reparameterization gradients. Reparameterization gradients have been known in the oper-
ations research community since the late 80s under the name of pathwise, or stochastic, gradients [[10}
43|]. There the “explicit” and “implicit” versions were usually introduced side-by-side, but they
were applied only to univariate distributions and simple computational graphs that do not require
backpropagation. In the machine learning community, the implicit reparameterization gradients
for univariate distributions were introduced by Salimans and Knowles [40]. That work, as well as
Hoffman and Blei [[19], used the implicit gradients to perform backpropagation through the Gamma
distribution using a finite difference approximation of the CDF derivative. Graves [15] independently
introduced the implicit reparameterization gradients for multivariate distributions with analytically
tractable CDFs, such as mixtures. We add to this rich literature by: generalizing the technique to
handle arbitrary standardization functions; deriving a simpler expression for the multivariate case than
that of Graves [15]]; showing the connection to explicit reparameterization gradients; and providing
an efficient automatic differentiation method to compute intractable CDF derivatives.

Generalized reparameterizations. The limitations of standard reparameterization was recently tack-
led by several other works. Ruiz et al. [38] introduced the generalized reparameterization gradients
(GRG) that expand the applicability of the reparameterization trick by using a standardization function
that allows the underlying base distribution to depend weakly on the parameter vector (e.g. only
through the higher moments). The resulting gradient estimator, in addition to the the reparameterized
gradients term, includes a score-function gradient term that takes into account the dependence of
the base distribution on the parameter vector, and was applied to the Gamma, Beta, and log-Normal
distributions. This leaves us with the challenge of finding an effective approximate standardization
function, which is nontrivial, yet essential for obtaining low-variance gradients with this approach.

Rejection sampling variational inference (RSVI) [32] is a closely-related approach that combines
the reparameterization gradients from the proposal distribution of a rejection sampler with a score-
function gradient term that takes into account the effect of the accept/reject step. When applied to the
gamma distribution the RSVI gradients can have lower variance gradients than those computed using
GRG [32]]. Davidson et al. [8] have recently demonstrated the use of RSVI with the von Mises-Fisher
distribution.

6 Experiments

We apply implicit reparameterization for two distributions with analytically intractable CDFs (Gamma
and von Mises) to three problems: a toy setting of stochastic cross-entropy estimation, training a
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Figure 1: Variance of the gradient and computation time for the cross-entropy optimization problem.
The vertical line denotes the optimal value for the parameter. Implicit gradient is faster and has lower
variance than RSVI [32].

Latent Dirichlet Allocation [5]] (LDA) topic model, and training VAEs [22} [37]] with non-Normal
latent distributions. We use the RSVI gradient estimator [32]] as our main baseline. For Gamma
distributions, RSVI provides a shape augmentation parameter B that decreases the magnitude of
the score-function correction term by using additional B samples from a uniform distribution. As
B — o0, the term vanishes and the RSVI gradient becomes equivalent to ours, but with a higher
computational cost. Von Mises distribution does not have such an augmentation parameter. For
LDA, we also compare to a surrogate distribution approach [41]] and a classic stochastic variational
inference method [I7]. The experimental details are reported in Appendix [D]

6.1 Gradient of the cross-entropy

We compare the variance of the implicit and RSVI gradient estimators on a toy problem of stochastic
estimation of the cross-entropy gradient, % Eq,(z)[—logp(2)]. It was introduced by Naesseth
et al. [32] as minimization of the KL-divergence; however, since they analytically compute the
entropy, the only source of variance is the cross-entropy term. We use their setting for the Dirichlet
distribution: p(z) = Dirichlet(z|a1, aa, ..., a100), ¢4(2z) = Dirichlet(z|¢, as, ..., a100), Where
o are the posterior parameters for a Dirichlet with a uniform prior after observing 100 samples
from a Categorical distribution. The Dirichlet samples are obtained by transforming samples from
Gamma. Additionally, we construct a similar problem with the von Mises distribution: p(z) =

Hzlozl vonMises(z4|0,2) and ¢4 (z) = vonMises(z1|0, ¢) 1—[;0:2 vonMises(z4|0, 2).

The results presented on Fig. [T|show that the implicit gradient is faster and has lower variance than
RSVLI. For the Dirichlet distribution, increasing the shape augmentation parameter B allows RSVI to
asymptotically approach the variance of the implicit gradient. However, this comes at an additional
computational cost and requires tuning this parameter. Furthermore, such a parameter is not available
for other distributions, including von Mises.

6.2 Latent Dirichlet Allocation

LDA [35]] is a popular topic model that represents each document as a bag-of-words and finds a set
of topics so that each document is well-described by a few topics. It has been extended in various
ways, e.g. [3, 4], and often served as a testbed for approximate inference methods [[17, |18} |44]. LDA
is a latent variable model with a likelihood pe(w|z) = Hfil Categorical(w;|®z), and the prior
pa(z) = Dirichlet(z|a), where w is the observed document represented as a vector of word counts,
z is a distribution of topics, & € R¥wordsx#opics jg 4 matrix that specifies the categorical distribution of
words in each topic, and o parameterizes the prior distribution over the topics. We perform amortized
variational inference by using a neural network to parameterize the Dirichlet variational posterior
over the topics z as a function of the observation.

We use the 20 Newsgroups (11,200 documents, 2,000-word vocabulary) and RCV1 [25] (800,000
documents, 10,000-word vocabulary) datasets with the same preprocessing as in [41]. We report the

test perplexity of the models, exp (—% 25:1 7 log p(wn)), where L,, is the number of words in

the document and the marginal log-likelihood is approximated with a single-sample estimate of the
evidence lower bound. Following [46]], we optimize the prior parameters o during training.



Table 3: Test perplexity for the topic modeling task (lower is better). LN-LDA uses Logistic Normal
distributions instead of Dirichlet.

Model Training method 20 Newsgroups RCVI
Implicit reparameterization 876 £ 7 896 £ 6
RSVIB =1 1066 = 7 1505 £+ 33
LDA [5] RSVIB =5 968 £+ 18 1075 £ 15
. RSVI B =10 887 £+ 10 953 £ 16
RSVI B =20 865 + 11 907 £ 13
SVI 964 +4 1330+ 4
LN-LDA [41] Explicit reparameterization 875+6 951 + 10
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Figure 2: Left: topics with the highest weight for 20 Newsgroups dataset; Right: prior topic weights
a. LDA learns sparse prior weights, while LN-LDA does not.

We compare amortized variational inference in LDA using implicit reparameterization to several
alternatives: (i) training the LDA model with the RSVI gradients; (ii) stochastic variational inference
(SVD) [17] training method for LDA; (iii) the method of Srivastava and Sutton [41]], which we refer to
as LN-LDA, that uses a Logistic Normal approximation in place of the Dirichlet prior and performs
amortized variational inference using a Logistic Normal variational posterior.

The results in Table [3 and Fig. [3(a-b) show that RSVI matches the implicit gradient results only
at B = 20, as opposed to B = 10 for the previous problem. Each iteration of RSVI is also about
15% slower. Interestingly, we see that amortized inference can achieve better perplexity than SVI.
Finally, we see that LDA trained with implicit gradients performs as well or better than LN-LDA. The
learned topics and the prior weights shown on Fig. 2]demonstrate that LDA automatically determines
the number of topics in the corpus by setting some of the prior weights to 0; this does not occur
in LN-LDA model. Additionally, LN-LDA is prone to representing the same topic several times,
perhaps due to a non-sparse variational posterior distribution.

The obtained results suggest that the advantage of implicit gradients compared to RSVI increases
with the complexity of the problem. When the original distributions are replaced by surrogates, some
desirable properties of the solution, such as sparsity, might be lost.

6.3 Variational Autoencoders

VAE [22}[37] is a generative latent variable model trained using amortized variational inference. Both
the generative and the variational posterior distributions (also known as the encoder and decoder) are
parameterized using neural networks. VAEs typically use a standard Normal distribution as the prior
and a factorized Normal as the variational posterior. The form of the likelihood depends on the data,
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Figure 3: Variance of the gradient during training.



Table 4: Test negative log-likelihood for VAE on MNIST (lower is better).

results are from [§]].

The von Mises-Fisher

Prior Variational posterior D=2 D=5 D =10 D =20 D =40

N(0,1) N(p,02) 1311406 1079404 925402 881402 88.1+0.0
Gamma(0.3,0.3) Gamma(a, () 1324+£0.3 108.0+£0.3 94.0+0.3 90.3+0.2 90.6+0.2
Gamma(10,10)  Gamma(a, 3) 135.0+£0.2 107.0+0.2 923+£0.2 883+02 883=%0.1
Uniform(0, 1) Beta(a, ) 128.34+0.2 1074+£0.2 94.1+0.1 889+0.1 88.6+0.1
Beta(10, 10) Beta(a, ) 131.1+0.4 106.7+0.1 921+02 87.8+0.1 87.7+0.1
Uniform(—m, 7) vonMises(, k) 1276+04 107.5+04 9444+05 90.9+0.1 91.5+04
vonMises (0, 10) vonMises(, k) 130.74+0.8 107.5+05 923+0.2 87.8+0.2 87.9+0.3
Uniform(SD) vonMisesFisher(p, k) 132.5+0.7 108.4+0.1 93.2+0.1 89.0+0.3 90.9+0.3
/S S s R AA COOL2666 6060606 3999949971771 %
/7 //s52a2daaaa 0002225565813 % 3498\ 14999433
l1/7//7¥#523a2aa 0002223333313 3dq 8l | 49m 233
11/ /7522323222 O00322235558+% 2228/ /R Z222
L1 11 8§8522 %2 0684223555 ¢% % 666685 /7/=0bb b6
\11188330000 Ceba2233588% 1 66555 50bbb66
999774960000 bbe+=d44dyaqyq 555555006555
99977960000 Lbors+4449717919 338855000033
9977196évoo FEPELYITTITIRN dadggsso0000a2
9971179966 és5o00 SSELEYL777791 227 Py 22222
99119996b6éE 2o ZFrrTTRRY 794014 rPPP?749927277%7
9917999b6ééso 7 O O X 29944997171 %
(a) Normal posterior and prior, (b) Beta, uniform prior, (c) Von Mises, uniform prior,

[~3,3] x [3, 3] [0,1] x [0, 1] [—m, 7] % [, 7]

Figure 4: 2D latent spaces learned by variational autoencoder on MNIST dataset. Normal distribution
exhibits a strong pull to the center, while Beta and Von Mises latents are tiling the full available space.

with factorized Bernoulli or Normal distributions being popular choices for images. In this section,
we experiment with using non-Normal distributions for the prior and the variational posterior. The
use of alternative distributions allows incorporating our prior assumptions about the latent factors of
the data, such as bounded support or periodicity.

We use fully factorized priors and variational posteriors. For the variational posterior we explore
Gamma, Beta, and von Mises distributions. For Gamma, we use a sparse Gamma(0.3, 0.3) prior and
a bell-shaped prior Gamma(10, 10). For Beta and von Mises, instead of a sparse prior we choose a
uniform prior over the corresponding domain.

We train the models on the dynamically binarized MNIST dataset [7]] using the fully-connected
encoder and decoder architectures from [§]], so our results are comparable. The results in Table E| show
that a uniform prior and cyclic latent space of von Mises is advantageous for low dimensional latent
spaces, consistent with the findings of [§]]. For a uniform prior, the factorized von Mises distribution
outperforms the multivariate von Mises-Fisher distribution in low dimensions, perhaps due to the
more flexible concentration parameterization (von Mises-Fisher uses shared concentration across
dimensions). The results obtained with bell-shaped priors are similar to the Normal prior/posterior
pair, as expected. The latent spaces learned by models with 2 latents shown on Fig. ] demonstrate the
differences in topolology.

We provide a detailed comparison between implicit gradients and RSVI in Table[7] of the supplemen-
tary material. For Gamma and Beta distributions, RSVI with B = 20 performs similarly to implicit
gradients. However, for the von Mises distribution implicit gradients usually perform better than
RSVI. For example, for a uniform prior and D = 40, implicit gradients yield a 1.3 nat advantage in
the log-likelihood due to the lower gradient variance (Fig. [3c).

7 Conclusion

Reparameterization gradients have become established as a central tool underlying many of the
recent advances in machine learning. In this paper, we strengthened this tool by extending its



applicability to distributions, such as truncated, Gamma, and von Mises, that are often encountered
in probabilistic modelling. The proposed implicit reparameterization gradients offer a simple and
practical approach to stochastic gradient estimation which has the properties we expect from such
a new type of estimator: it is faster than the existing methods and simultaneously provides lower
gradient variance. These new estimators allow us to move away from making model choices for
reasons of computational convenience. Applying these estimators requires a numerically tractable
CDF or some other standardization function. When one is not available, it should be possible to use
an approximate standardization function to augment implicit reparameterization with a score function
correction term, along the lines of generalized reparameterization. We intend to explore this direction
in future work.
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Implicit Reparameterization Gradients
Supplementary materials

A Testing of implicit gradient implementation

A simple test to verify the correctness of an implicit gradient implementation is to choose an
appropriate function f(z) and check that the Monte-Carlo averaging approximates the correct
quantity:

S
1
vq’) Eqd,(z) [f(Z)] ~ g Z sz(zs)V¢z5, Zs ™~ %(Z) (10)
s=1

For Gamma(c, 1), we can choose f(z) = z. Then, £ E, (.)z = 1, so the average stochastic
gradient should be equal to 1. For vonMises(0, k), an appropriate choice is f(z) = cos z. Then,

2
d _ d L) _ 11 (k) 1i(r)
EE‘IN(Z) Cosz = EI(I)(K) =1- Kll()(K,) B (I(I)(K)) .

B Implementation details for the reparameterization gradient

We implement the eqn. (8) using an equivalent but more numerically stable expression:

Vor= YD) _ o logas()Vpe an
e (2)

Gamma distribution. We perform forward-mode differentiation of the efficient computation method
of [3]]. We use the implementation available in Eigen [6]], which is based on the Cephes [11] library
(a more advanced version of this method is available in SciPy [8]]). For z > 1 and z > « this method
uses the continued fraction expansion:

B exp(—z)z® 1
v(z,a) =1 e T a (12)
z+
1+ !

n 22—«
PO

2
1 + Z4+...

It can be evaluated in “direct order” using the Wallis algorithm [[14]]. For other values of the arguments,
a series expansion is used:

exp(—=z)z®

7(Z’O‘):r(aH)(HkZﬂ(aH)(w )...(a+r)> (13)

In both cases, all the operations are differentiable with respect to «, so forward-mode differentiation
can be applied. We stop the computation as soon as the value of the derivative (not the CDF)
starts changing by less than a small value. The maximum number of iterations is set to 200 for
float32 precision and 500 for float64. Additionally, we multiply the resulting derivative by
exp(— log Gamma(z|c, 1)) in the same code. This improves the speed by about 30% and the
accuracy by an order of magnitude, because some of the terms, including a Gamma function, cancel
out.

Von Mises distribution. The CDF of a standardized von Mises distribution is given by the series

sin(j - 2)
T

I;(K)
o()

7 (14)

z > 1 o0

F(z]0,k) = /—n vonMises(t]0, k)dt = o T Z

Jj=1

For smaller concentration parameters, x < 50, the numerical method [7]] first chooses the truncation

point K for the series, and then computes the first K terms using an efficient backwards recursion.

For larger k, it computes the CDF of a Normal approximation for the von Mises. We use the

implementation available in the SciPy library [§]. Again, forward-mode automatic differentiation can
be used since all the operations with respect to « are differentiable.
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Table 5: The relative step size § used for finite difference approximation of the CDF derivative.
float32 float64

Gamma 10~2 10-°
Von Mises 107! 10~

C Accuracy and speed of the reparameterization gradient estimators

We start by describing how we computed the ground-truth value of the CDF derivatives. Then, we
specify the implementation details of the comparison.

Gamma distribution. The derivative of the CDF of Gamma distribution can be obtained in terms of
the hypergeometric function o F5 [[17]]:

dvy(z, =
% =7(z,a)(logz — (@) + 2 Fa(a, a5 + L+ 1 7Z)m’

where (o) = (logF( )) is the digamma function and oFh(o, o500 + 1,0 + 1;—2) =

>oreo (aﬁc) = Z) . The function o F5 is implemented in mpmath package [12], allowing to evaluate

this expression to arbltrary precision for comparison purposes. We compute it with the default settings
that result in f1oat64 precision.

15)

Von Mises distribution. Differentiating the series (I4) with respect to  using the identity %I (k) =
LI;(K) + L1 (k) yields

1(%) Ii(r) (k) ) sin(j - 2)
(2]0,K) = Z( - (Io(li))2> . (16)

We compute this expression using the SciPy implementation of the Bessel functions by truncating the
series at the 100" term.

d
dli —

Details of the comparison. We first choose a grid of the parameters. For Gamma distribution, we
consider & € {1 x 1072,1 x 1071, 1,1 x 10%,1 x 10%,1 x 10%}, and for von Mises we consider
k€ {1x1072,1 x 1071, 1,1 x 10'}. Then, we sample 1000 random variables from the distribu-
tion for each value of the parameter. We report the relative step sizes § > 0 determined by grid search
that we use for the finite difference approximation in Table[5] The timings are measured on a single
core of Intel Xeon CPU.

D Experimental details

We use TensorFlow framework [1]] for our experiments.

RSVI details. We use the proposal distributions suggested in [[13]]. For Gamma(a, 1), we employ
the proposal distribution from Marsaglia and Tsang [[10] which is explicitly reparameterizable using
the standard Normal. For vonMises(0, ), we use the wrapped Cauchy proposal distribution [2]] that
is explicitly reparameterizable using the Uniform distribution.

Gradient of the cross-entropy. The gradient variance is computed as

d 2
Eqy(2) <d¢>[ log p(z)] — c) , (17

where the expectation is estimated using 1000 samples and ¢ = ﬁﬂiq (=) [~ log p(2)] is the analytical
gradient of the cross-entropy. The timings are measured on a single core of Intel Xeon CPU.

Variance of the gradient during training. For LDA and VAE models, we estimate the variance of
the gradient by reusing the exponential moving averages of the first and second moments computed

by the Adam optimizer [9]. Specifically, denoting by m and v the estimates of the first and second
moments of the gradient respectively, the variance estimate is (v — m?). We average this estimate

12



Table 6: Hyperparameters used for the LDA experiments.

Dataset 20 Newsgroups RCV1 RCV1
Model LN-LDA,LDA LN-LDA LDA
Learning rate 3 x 1074 1x107% 1x1073
Layers in the inference network 3 1 2
Units per layer 300 200 250
Initial value of 0.7 0.5 0.95
Burn-in epochs for o 350 7 5

over all the parameters. Note that we compute the variance of the gradient with respect to the model
parameters: weights, biases and prior parameters.

Parameters of distributions. The positive-valued parameters (scale of Normal; all the parameters
of Gamma, Beta and Dirichlet; concentration parameter of von Mises) are computed as a softplus
of an unconstrained value. For all of these parameters except for the Normal scale, we additionally
perform clipping to the [10~2, 10%] range. This makes the analytical KL-divergence numerically
stable in £1oat32 precision. A good check for numerical stability is that the KL-divergence is always
non-negative.

The samples from von Mises distribution, and likewise the location parameter p, can be equivalently
represented as an angle z € [—m, 7), or as a point on a circle (z,y). We find that learning in the
second case is much easier. Thus, we compute the location parameter as 1 = atan2(x, y), where x
and y are unconstrained values, and transform the samples from the distribution: z — (cos z, sin z).

Latent Dirichlet Allocation. The 20 Newsgroups models are trained for 500 epochs, while the
RCV1 ones for 10 epochs. We set the number of topics to 50. The inference network is a ReLU
multilayer perceptron with the same number of units per layer. The optimization method is Adam [9]
with 81 = 0.9 and the batch size is 32. The model parameters are initialized using the Xavier
initializer [5]]: truncated Normal distribution with zero mean and the variance of m
The prior parameters are fixed at the initial value for a number of epochs (burn-in period) and then
trained jointly with other parameters. For the LN-LDA model [16], we tune the prior parameters
of the underlying Dirichlet distribution for which the Laplace approximation is performed; we also
checked that training the Normal prior parameters without any constraints does not improve the
perplexity. We find that the architectural modifications suggested in [[16], such as using dropout and
batch normalization, do not lead to improved values of the perplexity, so we do not use them (they
report the perplexity of 1059 for 20 Newsgroups dataset, while we obtain 875).

We find the key hyperparameters by Bayesian optimization of the validation set perplexity. The
validation set consists of 10% random training documents for 20 Newsgroups and 1% random training
documents for RCV1. A separate search is performed for (20 Newsgroups, RCV1) dataset and (LN-
LDA, LDA (implicit)) model, a total of four runs. For 20 Newsgroups the obtained hyperparameters
are very similar for both models, so we use the same values. They hyperparameter values are
presented in Table[6]

We use GenSim library [|15[]] implementation of stochastic variational inference (SVI). We train for
the same number of epochs and with the same number of topics as previously. We perform a grid
search for the key hyperparameters. For 20 Newsgroups, we use chunk_size=1000 and decay=0.5,
while for RCV1 we set chunk_size=2000 and decay=0.5. In both cases, we set alpha="auto",
meaning that the prior hyperparameters « are learned. The remaining options were set to the default
values.

We performed control experiments on the 20 Newsgroups dataset showing that (i) using a fixed prior
distribution increases the perplexity by 60 points; (ii) computing the KL using sampling instead of an
analytical expression increases the perplexity by 80 points. The latter result highlights the necessity
of using variational posteriors that allow for analytical KL estimation when dealing with “sparse”
distributions that have density asymptotes.

Variational autoencoder. We base our experimental setup on the one from Davidson et al. [4]]: a
fully-connected ReLLU network with two layers of 256 and 128 units as the encoder, a two-layer
fully-connected ReLU network with 128 and 256 units as the decoder, minibatch size of 64, Adam
optimizer [9], and annealing the KL term from 0 to 1 over the first 10°> minibatches. The only
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Table 7: Comparison of the implicit reparameterization gradients and RSVI for the generative
modeling task on MNIST dataset. The reported value is the test negative log-likelihood (lower is
better).

Prior Variational posterior  Training method D=2 D=5 D =10 D =20 D =40
N(0,1) N (1, 02) Explicit 131.14+0.6 107.94+04 925+02 88.1+02 88.1+0.0
o o Implicit 1324403 108.04+0.3 94.0+03 90.3+£02 90.6=+0.2
Gamma(0.3,0.3) Gamma(a, §) RSVIB=20 1323402 1085+03 943+09 90.1+0.1 90.6+0.1
. . Implicit 1350402 107.04+0.2 923+02 833+02 883+0.1
Gamma(10,10) ~ Gamma(a, §) RSVIB=20  131.64+0.3 107.1+0.1 922401 88240.1 83.2+0.1
L ‘ Implicit 1283+£0.2 1074402 941401 88.9+0.1 88.6+0.1
Uniform(0, 1) Beta(a, 5) RSVIB=20 1289+08 107.3+0.1 943+01 8.8+0.1 8385+0.1
N N Implicit 131.1+04 1067401 921+02 87.8+0.1 87.7+0.1
Beta(10,10) Beta(a, ) RSVIB =20  131.74£04 1069401 92.2+0.1 87.7+£0.1 87.6+0.1
Uniform(—m.7)  vonMises(s, ) Implicit 127.6 £ 04 10754204 944405 90.9+0.1 91.5+04
’ sesith RSVI 1291404 107.6+03 96.0+05 92.8+02 928-+0.2
vonMises(0.10)  vonMises(ye x) Implicit 130.7+0.8 1075405 923+02 87.8+02 87.9+03
sestt, sesip, ki RSVI 1304407 107.84+0.5 93.0+0.1 887402 88.7+0.1

differences are (i) we do not perform early stopping and always train for 2 million minibatches; (ii)
we train each model with the learning rates of 10~3 and 10~% and choose the best-performing one.
The model parameters are initialized from a truncated Normal distribution with zero mean and the

variance of fanl_in. We estimate the log-likelihood using importance sampling with 500 samples.

We present the comparison between the implicit gradients and the RSVI gradients in Table |/} We find
that the implicit gradients and RSVI perform similarly for Gamma and Beta distributions, but implicit
gradients allow to obtain better results for the von Mises distribution, since there is no analogue of
the shape augmentation parameter B for this distribution.
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