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Behavioural research asks a broad range of questions, and most 
of them are of a causal nature1. When we ask how a drug affects 
a patient, we want to know its causal effect: does it make the 

patient better? We do not want to ask the correlational question: 
does taking the drug correlate with well-being? Characteristics of 
the patient such as socioeconomic status may affect both the prob-
ability of being prescribed a drug and the patient’s well-being. 
Similarly, in neuroscience, we have many causal questions. For 
example, we are interested in how one brain area affects another 
brain area, as opposed to how the two brain areas are correlated. In 
psychology, we ask which interventions improve people’s thriving, 
again not to be confused with correlation (people with big yachts 
are happier, but see ref. 2). The primary goal of the bulk of scientific 
research is to ask how elements of a system causally affect other ele-
ments. Causality is at the heart of many questions in behaviour and 
neuroscience.

Ignoring the difference between correlation and causality fre-
quently leads scientists to incorrect conclusions. In one notorious 
example from medicine, a correlational study suggested that hor-
mone replacement therapy (HRT) may decrease the risk of cardio-
vascular disease in post-menopausal women3. A later randomized 
controlled trial, however, showed the opposite4 — that HRT actu-
ally led to worse cardiovascular outcomes. The discrepancy likely 
resulted from influences of socioeconomic status5; women with 
higher socioeconomic status were both more likely to receive HRT 
and to have better outcomes. In neuroscience, we have the same 
problem; many studies are inherently correlational due to the dif-
ficulty of controlling neurons and neural states. Reliably identifying 
causality without randomized experiments is difficult.

The crucial problem in causal inference is confounding. We 
would like to estimate the influence between two variables X and Y,  
but there may be other variables that affect both X and Y. If we set 
the value of X, as we do in a randomized experiment, there is no 
issue because the other variables can only affect Y. Running such 
experiments is the basis of the experimental method6, and allows for 
a direct reading out of causal effects. This has been done, often at 
great cost, for education (for example, The Perry Preschool Project 
and The Carolina Abecedarian Project), neuroscience (for example, 
optogenetics, slice stimulation) and clinical psychology (for example,  

therapy comparison), and is frequently done in online user interac-
tions (for example, A/B tests). In medicine, randomization is the 
gold standard and is called a randomized controlled trial. When 
we can set the relevant variables and randomize, answering causal 
questions meaningfully is far more straightforward.

But if we can only observe a system, then confounding is a seri-
ous problem; we can never know if an apparent interaction between 
X and Y is real or is confounded by the other variables. This is often 
the case for a number of reasons. First, there are many variables 
that we cannot easily set, for example, the activity of neurons some-
where in the brain. Second, setting variables is often expensive, for 
example, in the case of large clinical trials7–9. Third, randomized 
experiments can be unethical, since they can force us to withhold 
the intervention that we believe to be best. When we cannot set all 
of the variables of interest, confounding is a serious issue that makes 
it hard to learn about the effect of one variable on another. Yet, most 
of the world’s ever-growing data do not come from randomized 
experiments and we should not waste this data.

In response to the confounding problem in observational data, 
there are two important schools of thought. One school attempts 
to builds large, complex models that observe and model all con-
founders. Such models thus assume that confounding is unlikely 
or impossible. There are many widely used methods that make 
this ‘unconfoundedness’ assumption in neural and behavioural 
research, for example, Granger causality10 (see Box 1 for others). 
However, unconfoundedness is rarely plausible as virtually all sys-
tems that we study have more variables of importance than we can 
realistically measure or model. A second school of thought that has 
arisen in response to the confounding problem focuses on quasi-
experiments11. Although we may not assume unconfoundedness 
in general, we may still be able to find variables in our data that 
are assigned in a way that is as good as random. This Perspective 
focuses on discussing this second way of thinking (see Box 2 for 
nomenclature) about causal inference.

This second school of thought mainly comes from econometrics, 
and over the past few decades has developed a number of ways in 
which meaningful causal estimates can be obtained without ran-
domization. Economists were obtaining unreliable results based 
on correlational methods, so they decided to “take the con out of 

Quasi-experimental causality in neuroscience  
and behavioural research
Ioana E. Marinescu1*, Patrick N. Lawlor2 and Konrad P. Kording   3,4

In many scientific domains, causality is the key question. For example, in neuroscience, we might ask whether a medication 
affects perception, cognition or action. Randomized controlled trials are the gold standard to establish causality, but they are 
not always practical. The field of empirical economics has developed rigorous methods to establish causality even when ran-
domized controlled trials are not available. Here we review these quasi-experimental methods and highlight how neuroscience 
and behavioural researchers can use them to do research that can credibly demonstrate causal effects.

NaturE HuMaN BEHavIour | www.nature.com/nathumbehav

mailto:ioma@upenn.edu
http://orcid.org/0000-0001-8408-4499
http://www.nature.com/nathumbehav


PersPective NaTuRe HumaN BeHavIouR

econometrics”12 by developing better tools for causal inference. 
Some of these methods include the regression discontinuity design 
(RDD)13,14, the difference-in-differences (DiD) approach11 and 
instrumental variables11. These techniques are standard in econom-
ics yet are rarely used in many branches of behavioural and neu-
roscience research (although see Box 1 and Discussion for causal 
inference techniques already used in neuroscience).

Here we review these alternatives to randomization. We take 
published examples, and explain the methods. For each method, we 
then sketch how it could be used more widely across behavioural 
and neuroscience research using existing and emerging data. By sys-
temically replacing correlational techniques with causal techniques, 
economics went through what they call a credibility revolution. 
Perhaps as a result, empirical work in economics has progressively 
overtaken theoretical work both in terms of citations within eco-
nomics15, and in terms of citations to economics papers made by 
articles in other fields16.

regression discontinuity design
It is possible to approximate causality from a common property of 
decisions: thresholds for treatment. Treatment effects can often be 
estimated near thresholds, even without randomized experiments, 
because subjects near the threshold are similar. This approach was 
originally developed by Thistlethwaite, who was interested in the 
effect of academic recognition of student outcomes13. In that study, 
students with test scores above a certain threshold were given cer-
tificates of merit and public recognition. The students who received 
the certificate were clearly different from those that did not, for 
example, in intelligence and socioeconomic status, so it was not 
possible to simply ask how certificates of merit affected outcomes. 
However, as we approach the threshold score from either side, the 
students will become arbitrarily similar. This is because there is ran-
domness in the exact score a student received due to, for example, 
question selection or their last night’s sleep. Thistlethwaite found 
that certificates of merit led to more future scholarships, but not to 

differences in long-term career plans13. This strategy, which is based 
on the idea that samples just above and just below the threshold are 
nearly indistinguishable, is the basis of the RDD.

To perform the analysis, a regression of outcome as a function 
of the running variable (for example, test scores in the study by 
Thistlethwaite) is fit on both sides of the threshold. A causal effect 
would be manifested by a discontinuity between the regression line 
on the left and on the right of the threshold (see Fig. 1). This dis-
continuity in the outcome can only be from the treatment because 
no confounder is likely to have a discontinuity at exactly the same 
threshold (although it is standard to check this assumption). The 
RDD gives a meaningful and often unbiased estimate of the causal 
effect of the treatment in the vicinity of the threshold14.

It is important to be aware of the conditions needed for causal 
validity in RDD. Subjects must not be able to precisely control their 
score — and thus their treatment — for example, by working long 
enough hours to achieve exactly the score that will put them over 
the threshold. A test for this assumption was developed17, which 
looks for a discontinuity in the number (that is, density) of sub-
jects on either side of the threshold. Moreover, subjects must not be 
able to override the threshold mechanism for selection. Sometimes 
so-called fuzzy RDD approaches can deal with the problem of 
treatments not being perfectly administered18. Best practices for 
implementing RDD can be found in refs 14,19. Importantly, these 
methods allow checking whether the assumptions underlying RDD 
are valid. For example, potential confounders should not have a dis-
continuity at the threshold. While there are many statistical issues to 
consider for the RDD, there is an active community of practitioners 
furthering our already-strong understanding.

RDD should allow us to discover causal effects in many domains 
(see Table 1). Thresholds exist widely in human behaviour and neu-
roscience, and there are very few variables that subjects can noise-
lessly control. For example, in the field of neural theory, we might 
ask how neurons can estimate their causal effect on animal per-
formance, which would allow them to ask whether a larger weight 

Box 1 | overview of causal inference techniques already used in neuroscience

There are subfields of neuroscience that aspire to causal inference 
from observational data. Network neuroscience, for example, 
seeks to identify connectivity (often termed functional or effec-
tive connectivity) between brain regions using recorded time se-
ries from a variety of modalities (for example, functional magnetic 
resonance imaging, electroencephalography, spike trains)37,44–46. 
This connectivity is sometimes interpreted as causal, but the valid-
ity of this interpretation depends on context, and a priori plausi-
bility35. Importantly, the techniques listed below generally assume 
a lack of confounding by unobserved variables. In our view, this 
seems unlikely given the small number of observed signals and the 
high dimensionality of the brain. In this box, we review the most 
prominent techniques used in these fields. Note that these models 
can overlap, and that we have only presented the essence of each.

Granger causal models. The core intuition of Granger causality is 
that causes temporally precede effects10. A variable X (a time series) 
is said to Granger-cause Y (also a time series) if earlier values of 
X and Y predict Y better than earlier values of Y alone. That is, 
if the history of X improves predictions of Y, this is evidence 
that X causes Y. Granger causality has been used extensively in 
network neuroscience47,48 and macroeconomics49, but not without 
criticism36.

State-space models. This is a broad family of models50,51 in 
which one represents a system with one or more ‘state’ variables 
to characterize ‘the way the system is’. State variables may or 

may not be observed, typically evolve over time, and can be 
related to system inputs and output. For example, hippocampal 
neural activity could be a state variable that is affected/caused by 
experimental conditions and gives rise to (causes) a functional 
magnetic resonance imaging blood-oxygen-level dependent signal 
that is measured. States can be modelled as causally affecting one 
another as well52,53. This family of models includes dynamic causal 
modelling52,54, some types of point-process models55 and others.

Structural equation models. This is a type of regression model 
with multiple equations29. There can be multiple dependent 
variables and multiple independent variables. Dependent 
variables can also depend on other dependent variables. The 
dependencies between variables can, in some contexts, be given 
a causal interpretation. The parameters of these models are often 
found by regression approaches. Such models are also used in 
economics56.

Bayesian networks. This is a type of model that includes 
variables and their statistical dependencies1,28. In this framework, 
causality can be viewed as the probabilistic influence variable 
X has on variable Y after taking into account other variables 
in the network. It is said to be Bayesian because variables have 
prior and likelihood distributions, and other tools of Bayesian 
statistics can be used. This is also a broad family of models, and 
has been used in both network neuroscience38,57 as well as human  
causal learning58–61.
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would be better. The translation of neural drive to spiking has a fir-
ing threshold, which could allow neurons to estimate their causal 
effect20. There are countless possibilities to expand on the small set 
of current applications, for example, refs 13,21. RDD thus promises 
to be useful for nearly every subfield of behavioural research and 
neuroscience, ranging from education and medicine all the way to 
neural theory.

Difference-in-differences
Another approach for approximating causality is to look for tempo-
ral trends in treated versus untreated subjects, even if they were not 
randomly assigned. The core idea of this approach is to use longitudi-
nal data for two groups where only one is treated, but where the two 
groups are similarly affected by extraneous factors. For example, ref. 22 
investigated the effect of academic year length on student outcomes. 
It exploited a transient reduction in school year length that occurred 
in some but not all German states. Thus, it was possible to compare 
outcomes between short-school-year states (the treatment group) and 
a regular-school-year state (the control group) to measure the effect 
of the shortened school year. Grade repetition increased in the short-
school-year states relative to the regular-school-year state after the 
short school year was introduced. The length of the school year was 
thus found to have a causal effect on repeating grades.

To perform the analysis, the temporal evolution of the outcome 
is measured for both the treated and the untreated group. This, in 
a way, generalizes the idea of baseline-controlled or two-factorial 
designs sometimes used in clinical trials. A quantification of the 
temporal difference between the treated and the untreated group 
then allows the treatment effect to be estimated (see Fig. 2).

The DiD approach naturally comes with its own assumptions 
and caveats, many of which we can explicitly test. Most impor-
tantly, it assumes that the two groups are chosen such that they are 
similarly affected by relevant and perhaps unmeasured factors: this 

is the common trends assumption. In the above example, the two 
groups of German states should be similarly affected by the eco-
nomic context, other policy changes and so on. One way to provide 
support for this assumption is to check that trends in the outcome 
before the new treatment are parallel. The groups should also be 
stable in composition (for example, percentage of women in each 
group) over the period of comparison. Extensions such as nonlin-
ear DiD have also been developed23. Best practices for DID can be 
found in ref. 11.

DiD approaches should also be broadly applicable in behavioural 
science and neuroscience (see Table 2). Many, if not most, variables 
in neuroscience and behaviour are measured over time. And many 
interventions affect some people or neurons (the treatment group) 
but not others (the control group). The DiD approach thus promises 
to be useful across most subdisciplines that deal with behaviour.

Instrumental variables
A third common approach for quasi-experimental causal inference 
is instrumental variables24. With this approach, we seek to identify 
variables Z (‘instruments’) that causally affect the independent vari-
able of interest X, but only causally affect the dependent variable Y 
through X (Fig. 3). For example, ref. 25 sought to ask how maternal 
smoking affects birth weight. We should expect heavy confounding 
as, for example, low socioeconomic status may affect both smok-
ing and health. Instead, the authors leveraged tobacco taxes as an 
instrument, which arguably affects smoking but does not directly 
affect birth weight. Differences in tobacco taxes across years and 
across states could then be exploited to estimate the causal effect 
of smoking on birth weight. They found that maternal smoking 
decreased birth weight by between 300 and 600 g.

To perform an instrumental variable analysis, we first identify 
the independent and dependent variables. Next we find, through an 
understanding of the system, another variable that can serve as an 

Box 2 | Introduction to graphical models in causal reasoning

When trying to infer causal effects, it is helpful to visually rep-
resent the variables under consideration and the relationships 
between them. Graphical models, widely used in computational 
fields, provide a way to do this by representing each relevant 
variable as a circle (with a label), and each putative statistical 
relationship between two variables as a line connecting them. 
Causal relationships are represented by arrows, which can be 
unidirectional or bidirectional. The variables included in a 
graphical model should be all relevant independent and de-
pendent variables, as well as confounding variables that may 
affect the independent and dependent variables. Framed this 
way, the goal of causal inference becomes clearer: to estimate 
the strength and direction of the statistical relationships (lines/
arrows) between variables after maximally accounting for 
the important components in the system. Actually estimat-
ing the statistical relationships depends on the specifics of the  
proposed model.

Importantly, we should not assume that the variables we use in 
a graphical model can be experimentally controlled. We should, 
therefore, distinguish between observed variables and controlled 
(or set) variables. Observed variables always have the possibility 
of being affected by unknown and unmodelled confounding 
variables, whereas controlled variables are immune to this 
problem. Following Pearl1, we use the notation of do(X) to indicate 
an experimentally controlled variable, and the unqualified X to 
indicate a variable that is simply observed.

Consider an example addressed in the main text, in which 
we seek to find out whether maternal smoking affects a child’s 
birth weight. To form a graphical model of this scenario, we 

would specifically model maternal smoking and birth weight as 
variables in the system. Because we believe that smoking may 
influence birth weight, we would draw an arrow that points 
from maternal smoking to birth weight. We would also want to 
account for confounding factors, such as socioeconomic (SE) 
status; these factors may influence both a mother’s smoking 
as well as birth weight. Socioeconomic status should also be 
specifically modelled in the graphical model, and we should 
draw arrows from socioeconomic status to both maternal 
smoking and birth weight. Furthermore, because ethically we 
cannot randomize maternal smoking, we cannot use the do() 
notation. The graphical model of this simplified system is  
shown below.

SE
status

Maternal
smoking

Birth
weight
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instrument (taxes in the above example) that only affects the inde-
pendent variable. Next, we build a predictive model of the treatment 
X based on the instrument Z (first-stage regression). And then we 
use this prediction in a second-stage regression to quantify the 
causal effect of treatment (for example, smoking) on the dependent 
variable (birth weight in the above example). The essence of this 
approach is that it identifies changes in the dependent variable that 
occur as a result of varying the independent variable; the instru-
ment can be viewed as a rudimentary experimental manipulation of 
the independent variable. Simply regressing the dependent variable 
on the independent variable would be confounded by, for example, 
socioeconomic status in the above example. Such instrumental vari-
able approaches allow yet one more way to meaningfully deal with 
unobserved confounders.

The instrumental variable approach also has its assump-
tions and caveats. The most important assumption is the exclu-
sion restriction: the instrument (for example, tobacco taxes) 
should affect the dependent variable (for example, birth weight) 
only through its effect on smoking. That is, we should be able 
to exclude that the instrument affects the outcome other than 
through the independent variable. The exclusion restriction is 
not directly testable and must therefore be assessed on plausibil-
ity grounds given what we know about the phenomenon at hand. 
Furthermore, the instrument should not be too weakly correlated 
with the independent variable of interest to produce useful esti-
mates. The F test for the first stage can measure how strong the 
instrument is26. Best practices and further discussion of instru-
mental variable can be found in ref. 11

Instrumental variable approaches should also be broadly appli-
cable in behavioural science (see Table 3). Typical experiments have 
many variables that are not experimentally randomized, yet affect 
the system. For example, metabolism affects neural activity, which 

affects behaviour; markers of metabolism could therefore be viewed 
as instruments to ask how neural activity gives rise to behaviour. 
Many such variables are random with respect to behaviour, and 
could just as easily be viewed as instruments. Even standard tech-
niques such as optogenetics may be better viewed as instruments27. 
Optogenetics does not precisely set neural activity; it only affects 
it. Hence, it may be useful to view optogenetic stimulation of brain 
region X as an instrumental variable, and then use that model to ask 
how brain region X affects region Y. More generally, it may be pos-
sible to create biological constructs with instrumental variable-like  
properties; for example, a molecular construct that inactivates 
individual neurons at random times. In summary, instrumental 
variables are an approach to get good results by using existing, non-
experimental randomization.

Discussion
Here we have argued that understanding causal effects is the goal 
of the bulk of both behavioural science and neuroscience, and 
that these fields need to adopt better techniques for making causal 
inferences. We have reviewed three prominent quasi-experimental 
approaches developed in economics, explained their application, 
and suggested ways that they might be applied in a number of 
examples using existing data. These techniques promise to move 
our data analysis towards a causal understanding. We chose three 
particular techniques — RDD, DiD and instrumental variables — 
but many other techniques for estimating causal influence exist. 
For example, Bayesian networks28 and structural equations29 can be 
used to model networks of relevant variables and to estimate causal 
relationships between them. Propensity score matching estimates 
causal effects between treated and untreated subjects by adjusting 
for observed confounders that predict treatment30–32. Other tech-
niques use noise distributions to estimate the direction of causal 
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Fig. 1 | regression discontinuity design. a, Graphical model of the RDD approach. W represents confounding variables; R is the running variable, 
which determines the treatment along with the threshold; X is the treatment (independent variable), which is either administered (do(X)) or not 
administered (do(not X)) depending on R; and Y is the outcome (dependent variable) of interest. b, Graphical model representing this analysis 
performed in ref. 13. Socioeconomic (SE) status (for example) is likely to affect both test score and the probability of receiving a scholarship. Test score 
determines whether a certificate of merit is awarded, which in turn affects the probability of receiving a scholarship. c, Schematic of a RDD analysis. 
The treatment is only administered if the running variable is above the threshold. The outcome (y axis) is plotted as a function of a running variable 
(x axis). The magnitude of the treatment effect, the difference in outcome at the threshold, is estimated using regression. d, Schematic representing 
the analysis performed in ref. 13. Academic outcome (probability of scholarship) is plotted as a function of test score, and a discontinuity is seen at the 
cut-off for receiving a certificate of merit. Note that this figure is stylized and does not use the data used in the original analysis; it is intended only to 
demonstrate the approach.
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Table 1 | Possible applications of rDD in neuroscience and behavioural research

area Question running variable threshold outcome variable

Education How much does enrichment help? Test scores used for 
enrichment programme

Minimum test score Education outcome, income

Medicine How much does blood pressure 
medication help?

Blood pressure Treatment guideline Death by cardiovascular disease

Counselling How many people should receive 
depression treatment?

Risk score Enrolment threshold Mental health

Advertising How much does an advertisement 
affect consumer behaviour?

Affinity score Money limit Sale of product

Neural data 
science

What are the neural requirements for 
movement?

Neural drive Firing threshold Activity of a downstream 
neuron or muscle

Neural theory How much would a larger synaptic 
weight increase reward-seeking 
behaviour?

Neural drive Firing threshold Behavioural change
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Fig. 2 | Difference-in-differences. a, Graphical model for the DiD approach. All variables are considered as a function of time, t. W represents confounding 
variables; X is the treatment (independent variable), which is administered (do(X)) to population 1, and not administered (do(not X)) to population 2; Y1 
and Y2 are the outcomes (dependent variables) for populations 1 and 2, respectively; D is the difference between Y1 and Y2 and is tracked over time.  
b, Graphical model representing this analysis performed in ref. 22. Common trends such as federal taxes and economic conditions are likely to affect the 
two states similarly. The short school year is implemented only in one state. The difference in outcome is calculated from the two states’ outcomes.  
P, probability. c, Schematic of a DiD analysis. The trend of two groups, treated and untreated, is plotted as a function of time. Before the treatment, 
the trends of the two groups should be parallel (a constant DiD). The treatment effect is estimated by the degree to which the trends diverge after the 
treatment is administered. d, Schematic figure representing the analysis performed in ref. 22. Outcome (probability of grade repetition) is plotted as a 
function of time, before and after the implementation of the short school year in some states. The difference between state outcomes changes after 
the change in school year (that is, there is an increase in difference in differences). Note that this figure is stylized and does not use the data used in the 
original analysis; it is intended only to demonstrate the approach.
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influence33. Synthetic controls may be a valuable way to construct 
better control/comparison groups for case control and DiD stud-
ies34. In this Perspective, however, we have focused on quasi-exper-
imental approaches as these approaches readily allow dealing with 
unobserved confounders that make causal inference difficult in 
behavioural science as well as neuroscience.

Neuroscience and psychology do have a history of using tech-
niques that attempt to recover causal influences from data. Network 
neuroscience has used a large suite of approaches (see Box 1) with 
the goal of deciphering the complex networks of the brain. This is 
an important line of work, but whether these techniques actually 
recover true causal effects in this context remains an open ques-
tion35,36. Many challenges exist, such as possible omitted variables 
and the difficulty of modelling information transformation between 
brain regions35,37. Although some of the techniques we present could 
be applied towards this purpose, we view the RDD, DiD and instru-
mental variables as more general approaches that exploit different 
aspects of data than network approaches. The RDD exploits thresh-
olds, which is clearly different from the network approaches. The 
DiD approach exploits common trends even when confounders 
are not always identifiable, whereas network approaches generally 
are sensitive to omitted confounders33. The instrumental variables 
approach identifies non-experimental randomization, and although 
it could be incorporated into network approaches, we believe that 

its use is far more general. We therefore believe that the techniques 
discussed in this Perspective widen the scope of data available for 
causal analysis in neuroscience and behavioural science.

Techniques for quasi-experimental causal inference are ripe for 
application in behavioural science and neuroscience. They could 
fruitfully be applied to existing laboratory data, such as neuroimag-
ing, virtual reality behaviour or neural spike recordings. This may 
allow us to extract more valuable information from these data. But 
these techniques also make it possible to perform credible analyses 
of the kind of observational data offered by the information age39 
that is much cheaper and much more common than laboratory 
data. Thresholds exist everywhere, in online systems40, economic 
activity (for example, tax notches, see ref. 41), but especially in 
medicine21, making RDD, with its clean treatment of confounders, 
an invaluable tool. Wherever parallel trends exist, DiD promises 
to give our analyses better controls. And identifying valid instru-

Table 2 | Possible applications of the DiD approach

Field Question Comparison outcome 
measured over 
time

Educational policy How do 
smartphones 
affect middle-
school 
students?

Two nearby 
school districts 
before and 
after a new 
smartphone 
policy change

Standardized 
test scores, 
disciplinary 
action

Rehabilitation How well does 
rehab work?

Affected limb 
and unaffected 
limb before and 
after rehab

Strength, 
coordination 
scores

Neurology What are the 
effects of new 
brain lesions 
in multiple 
sclerosis?

Before and after 
unilateral lesion

Strength, 
coordination 
scores

Public relations Do ads have 
negative side 
effects?

In- versus 
outside of target 
area, before and 
after the start an 
ad campaign

Attitudes 
towards ads

Smoking
tax

SE
status

Maternal
smoking

Birth
weight

W

X Y

Z

a

b

Fig. 3 | Instrumental variables. a, Graphical model for the instrumental 
variables approach. W represents confounding variables; X is the 
independent variable; Y is the outcome (dependent variable); Z is the 
instrument, which only affects Y through its effect on X. b, Graphical 
model representing the analysis performed in ref. 25. Maternal smoking is 
thought to affect birth weight. But socioeconomic (SE) status (for example) 
likely affects both a mother’s decision to smoke as well as the child’s birth 
weight. A tax on cigarette smoking could affect maternal smoking but is 
unlikely to directly influence the birth weight, except through an effect on 
maternal smoking. Such a tax is therefore a good instrument to examine 
the effect of smoking on birth weight without being confounded by 
socioeconomic status.

Table 3 | Possible applications of instrumental variable approach

area Question Independent variable X Dependent variable Y Instrument Z

Medicine Does a medication affect 
patient outcomes?

Medication use Patient outcome Hospital rules about 
pharmaceutical reps

Neuroscience How does brain region A affect 
region B?

Brain region A activity Brain region B activity Diffuse optogenetic 
stimulation of brain region A

Behavioural health Does alcohol consumption 
make you a bad parent?

Alcohol consumption Parenting license exam Alcohol taxes

Education Does having more disposable 
income improve educational 
outcomes?

Income Educational outcome Income tax cut
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ments on independent variables of interest will help us to tease 
apart causal relationships with instrumental variables. Every neu-
roscientist and behavioural scientist should become familiar with 
these techniques.

In the 1980s, it became obvious in economics that the typi-
cal correlational findings were not overly indicative of real causal 
effects. This led the field of econometrics to decide to work towards 
methods that allow the quantification of causality42. In the following 
decades, causal inference improved massively and today the bulk 
of top economics papers uses standard causal inference strategies42.

Neuroscience and behavioural science have the same problem: 
we write stories about causality in behaviour and brains based 
on correlational data, whereas we need techniques that can reli-
ably demonstrate causal effects. Many techniques currently used 
in neuroscience may actually be misleading us36 because we mis-
understand whether they measure causal effects. Furthermore, a 
focus on causal effects should help us to focus on which effects 
are worth caring about, such as behaviour43. This understanding 
of the deeply problematic basis of this kind of inference is slowly 
taking hold in the community. To lead to a deeper understanding 
of minds and brain, we need to take the causal questions seriously. 
We can only do so by applying techniques that allow us to answer 
those questions.
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