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Converging evidence from structural, metabolic and functional connectivity MRI suggests that neurodegenerative diseases, such as

Alzheimer’s disease, target specific neural networks. However, age-related network changes commonly co-occur with neuropatho-

logical cascades, limiting efforts to disentangle disease-specific alterations in network function from those associated with normal

ageing. Here we elucidate the differential effects of ageing and Alzheimer’s disease pathology through simultaneous analyses of two

functional connectivity MRI datasets: (i) young participants harbouring highly-penetrant mutations leading to autosomal-dominant

Alzheimer’s disease from the Dominantly Inherited Alzheimer’s Network (DIAN), an Alzheimer’s disease cohort in which age-

related comorbidities are minimal and likelihood of progression along an Alzheimer’s disease trajectory is extremely high; and

(ii) young and elderly participants from the Harvard Aging Brain Study, a cohort in which imaging biomarkers of amyloid burden

and neurodegeneration can be used to disambiguate ageing alone from preclinical Alzheimer’s disease. Consonant with prior

reports, we observed the preferential degradation of cognitive (especially the default and dorsal attention networks) over motor

and sensory networks in early autosomal-dominant Alzheimer’s disease, and found that this distinctive degradation pattern was

magnified in more advanced stages of disease. Importantly, a nascent form of the pattern observed across the autosomal-dominant

Alzheimer’s disease spectrum was also detectable in clinically normal elderly with clear biomarker evidence of Alzheimer’s disease

pathology (preclinical Alzheimer’s disease). At the more granular level of individual connections between node pairs, we observed

that connections within cognitive networks were preferentially targeted in Alzheimer’s disease (with between network connections

relatively spared), and that connections between positively coupled nodes (correlations) were preferentially degraded as compared

to connections between negatively coupled nodes (anti-correlations). In contrast, ageing in the absence of Alzheimer’s disease

biomarkers was characterized by a far less network-specific degradation across cognitive and sensory networks, of between- and

within-network connections, and of connections between positively and negatively coupled nodes. We go on to demonstrate that

formalizing the differential patterns of network degradation in ageing and Alzheimer’s disease may have the practical benefit of

yielding connectivity measurements that highlight early Alzheimer’s disease-related connectivity changes over those due to age-

related processes. Together, the contrasting patterns of connectivity in Alzheimer’s disease and ageing add to prior work arguing

against Alzheimer’s disease as a form of accelerated ageing, and suggest multi-network composite functional connectivity MRI

metrics may be useful in the detection of early Alzheimer’s disease-specific alterations co-occurring with age-related connectivity

changes. More broadly, our findings are consistent with a specific pattern of network degradation associated with the spreading of

Alzheimer’s disease pathology within targeted neural networks.
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Introduction
Evidence from electrophysiological, imaging, and genetic

studies supports the organization of the brain into large-

scale, anatomically distributed neural networks that share a

predictable anatomy across individuals (Yeo et al., 2011,

2013). These networks are differentially associated with a

variety of complex behaviours, ranging from episodic

memory to motor planning, suggesting the specialization

of particular networks for motor, social, or cognitive be-

haviours (Seeley et al., 2007; Sambataro et al., 2010;

Lehmann et al., 2013b). Network-sensitive imaging modal-

ities, especially resting state functional connectivity MRI,

offer an opportunity to probe the polysynaptic integrity

of these networks (Greicius et al., 2009; Lu et al., 2011;

Fox et al., 2012), and assess whether variations in coordi-

nated activity within particular networks relate to the

performance of particular cognitive and motor tasks (Fox

and Greicius, 2010; Sambataro et al., 2010; Shirer et al.,

2011; Shaw et al., 2015; Dresler et al., 2017).

Structural and functional imaging evidence strongly sug-

gests that neurodegenerative diseases differentially target

subsets of neural networks (Rabinovici et al., 2007;

Seeley et al., 2009; Rohrer et al., 2010; Lee et al., 2011;

Greicius, 2013). Elegant studies in amnestic, language, and

visuospatial presentations of Alzheimer’s disease, fronto-

temporal dementia, and corticobasal syndrome suggest

that disease-characteristic patterns of atrophy (Zhou

et al., 2012) and hypometabolism (Lehmann et al.,

2013a) mirror intrinsic connectivity network architecture,

suggesting that network-specific alterations in functional

connectivity MRI reflect this differential targeting of net-

works across disease states. These observations are particu-

larly intriguing given the potential for trans-synaptic spread
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of pathological protein species (Harris et al., 2010; Walker

et al., 2013; Hyman, 2014; Spires-Jones and Hyman,

2014), a mechanism that may explain the preferential loss

of functionally coupled neurons within targeted networks.

Functional connectivity MRI has also become a tool to

examine network dysfunction in neurodegenerative and

psychiatric disease, as well as a potential biomarker in

clinical research settings (Greicius et al., 2004; Fox and

Greicius, 2010; Jones et al., 2011, 2016; Zhou et al.,

2012). In Alzheimer’s disease, early evidence of degraded

default network integrity (Greicius et al., 2004) has been

widely replicated across diverse clinical cohorts (including

in both early- and late-onset disease) and using several dif-

ferent analytic approaches. There is also substantial evi-

dence to suggest that other cognitive intrinsic connectivity

networks are degraded in Alzheimer’s disease. Specifically,

dorsal attention and frontoparietal control (Control) net-

work degradation have been observed to varying degrees

in both early-onset (Lehmann et al., 2013b; Thomas et al.,
2014), and late-onset Alzheimer’s disease (Li et al., 2012;

Thomas et al., 2014). Changes in salience network connect-

ivity in late-onset Alzheimer’s disease have been more vari-

able across studies, with some authors reporting increasing

connectivity relative to healthy controls (Zhou et al., 2010),

and others reporting decreases (Thomas et al., 2014), or no

change (Agosta et al., 2012).

However, despite widespread agreement across studies

regarding the early degradation of the default network in

Alzheimer’s disease, discerning the extent to which the de-

fault network is preferentially targeted relative to other cog-

nitive and non-cognitive networks remains difficult given

study-specific variations in which networks were examined,

the analytic approach used, and the composition of the

clinical population comprising the dataset. Additionally,

changes in default network connectivity, though consist-

ently observed in Alzheimer’s disease, have also been seen

in many other disease states (ranging from headache to

chronic pain), including some common confounders of

early Alzheimer’s disease such as ageing (Andrews-Hanna

et al., 2007; Jones et al., 2011; Wu et al., 2011), sleep

disruption (Sämann et al., 2010, 2011; De Havas et al.,

2012), and depression (Sheline et al., 2009). These obser-

vations suggest that single network measures may not op-

timally describe disease-specific changes, and that single

network connectivity measurements may be confounded

in the presence of co-morbid disease states. The potential

for common confounding conditions to obscure (or exag-

gerate) early disease-related changes is particularly relevant

in late-onset Alzheimer’s disease clinical research, as elderly

individuals are more likely to have multiple co-morbid con-

ditions and ageing itself is thought to exert a considerable

effect on network connectivity measurements.

In the present report, we examine the hypothesis that

selective vulnerability of particular networks to

Alzheimer’s disease-related degradation should generate a

distinctive multi-network pattern of connectivity change

that will be observable across a wide spectrum of

impairment, and that a nascent form of this Alzheimer’s

disease degradation pattern may be recognized in asymp-

tomatic individuals with clear signs of Alzheimer’s disease

pathology (i.e. preclinical Alzheimer’s disease). Further, we

examine whether this Alzheimer’s disease pattern of con-

nectivity change is distinct from the degradation pattern

seen with ageing in the absence of Alzheimer’s disease path-

ology, and whether these differential patterns can be used

to develop composite connectivity measurements that are

helpful in disambiguating Alzheimer’s disease- and age-

related connectivity changes.

To better isolate changes seen along the Alzheimer’s dis-

ease trajectory from those seen with ageing, we made use of

functional connectivity MRI data from relatively young in-

dividuals harbouring mutations leading to autosomal dom-

inant Alzheimer’s disease (ADAD) participating in the

Dominantly-Inherited Alzheimer’s Network (DIAN;

ClinicalTrials.gov Identifier: NCT00869817). Because of

the relatively early age of symptom onset and the near com-

plete penetrance of ADAD-causing mutations, this popula-

tion offers a rare opportunity to examine Alzheimer’s

disease network changes in the absence of advanced age

and in individuals on a certain Alzheimer’s disease trajec-

tory (Bateman et al., 2012). Notably, pathology studies

from the DIAN cohort suggest young individuals with

ADAD show much lower levels of age-related pathologies

(e.g. hippocampal sclerosis, argyrophilic grain disease,

microinfarcts) than are seen in late-onset Alzheimer’s disease

(Cairns et al., 2015).

The ADAD derived pattern is then compared to the pat-

tern seen in imaging biomarker defined preclinical, late-

onset Alzheimer’s disease (Sperling et al., 2011; Jack

et al., 2012), and to the pattern seen in ageing in the ab-

sence of imaging biomarkers suggestive of Alzheimer’s dis-

ease pathology. The stratification of clinically normal

elderly (CNE) individuals based on Alzheimer’s disease

imaging biomarkers, using a combination of amyloid

PET, structural MRI assessment of hippocampal volume,

and 18F-fludeoxyglucose (FDG) PET, allows for better sep-

aration of ageing and preclinical Alzheimer’s disease, a crit-

ical step in disambiguating these often overlapping

processes (Brier et al., 2014). Importantly, work from a

number of large cohorts [including the Harvard Aging

Brain Study (HABS)] strongly suggests that individuals

with imaging biomarkers suggestive of preclinical

Alzheimer’s disease show increased rates of cognitive de-

cline in longitudinal studies, particularly when early signs

of neurodegeneration are coupled with elevated amyloid

burden (Chételat et al., 2012; Jack et al., 2012; Knopman

et al., 2012; Mormino et al., 2014; Burnham et al., 2016).

Comparability across these diverse clinical groups is

facilitated by the use of template-based rotation (TBR),

an analytic technique that applies a uniform set of network

templates across cohorts (Schultz et al., 2014). As the net-

work templates in TBR are derived entirely out-of-sample,

they are not affected by the clinical make-up of particular

subject samples, differentiating TBR from group
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independent components analysis. Using TBR, we examine

connectivity changes in four cognitive networks implicated

in Alzheimer’s disease-related cognitive decline: the default

(Greicius et al., 2004), salience (Fox et al., 2006; Seeley

et al., 2007, 2009), dorsal attention (Corbetta and

Shulman, 2002; Ptak and Schnider, 2010; Brier et al.,

2012), and control networks (Schultz et al., 2014; Shaw

et al., 2015; Buckley et al., 2017), and compare these to

connectivity changes seen in three networks less implicated

in Alzheimer’s disease: the motor (Damoiseaux et al., 2006;

James et al., 2009; Inman et al., 2012), extrastriate visual

(Yeo et al., 2011, 2013), and primary visual networks

(Beckmann and Smith, 2004; Beckmann et al., 2005; Yeo

et al., 2011; Mueller et al., 2013). While prior studies (and

clinical observation) strongly suggest that cognitive net-

works may be preferentially degraded in Alzheimer’s dis-

ease, the inclusion of three non-cognitive networks allows

greater potential for contrasting multi-network patterns of

degradation in ageing and Alzheimer’s disease, and pro-

vides context for understanding the degree to which par-

ticular networks are preferentially targeted in Alzheimer’s

disease.

Whole network connectivity analyses using TBR are com-

plemented by secondary analyses examining node-to-node

connectivity more broadly within and across networks.

This more network agnostic analytic method allows for

an understanding of distributed versus local failure of cog-

nitive networks, as well as the opportunity to examine

inter-network connections and anti-correlations that are

degraded in Alzheimer’s disease and ageing comparisons

(Chan et al., 2014; Geerligs et al., 2015; Turner and

Spreng, 2015).

We identify distinct multi-network degradation patterns

along the ageing and Alzheimer’s disease trajectories, pro-

viding further evidence that ageing and Alzheimer’s disease

are distinct pathophysiologies and that Alzheimer’s disease

pathology preferentially degrades connections within cogni-

tive networks. This distinctive, Alzheimer’s disease-related

multi-network pattern of degradation could be observed

across a wide range of impairment, including in early dis-

ease and in advanced states of impairment. These findings

support the selective vulnerability of particular networks in

Alzheimer’s disease and are consistent with the preferential

spread of pathology within targeted networks. Lastly, we

argue that an understanding of the differential patterns of

network degradation in ageing and Alzheimer’s disease can

be leveraged to yield connectivity measurements that can

better isolate Alzheimer’s disease-driven changes in con-

nectivity from those likely due to normal ageing.

Materials and methods

Participants

Participants provided informed consent in accordance with the
local institutional review boards of each participating site.
ADAD participants were drawn from the DIAN (U19-
AG032438, Clinical Trial Identifier NCT00869817), a study
that enrols persons at risk or known to carry pathogenic mu-
tations in presenilin-1 (PSEN1), presenilin-2 (PSEN2), or
amyloid precursor protein (APP). Details on genetic analyses
for ADAD mutations and detailed protocols for DIAN have
previously been published (Bateman et al., 2012). Each DIAN
participant’s estimated years to symptom onset (Table 1) was
computed as the participant’s age minus the age at which the
participant’s parent or sibling first showed symptoms of
progressive cognitive decline. Cognitively normal young and
elderly participants were drawn from the HABS (P01-
AG036694). HABS participants are native English speakers
who fell into normal ranges for Mini-Mental State
Examination (MMSE), Clinical Dementia Rating (CDR), and
Logical Memory scores at study entry.

Functional connectivity MRI

DIAN and HABS participants underwent eyes-open resting
state functional MRI. DIAN data were collected at multiple
sites on either a 3 T Siemens Trio TIM or Verio scanner
using a 12-channel or 32-channel head coil, depending on
site. All HABS data were collected on one 3 T Siemens Trio
Tim scanner. For DIAN participants, images were acquired in
a single run of 120 time points, lasting �4.5 min (repetition
time = 2200 ms). For HABS, images were acquired in two runs
of 124 time points (repetition time = 3000 ms), with each run
lasting �6 min (12 min total). Subject-level connectivity maps
for each network template were generated, and connectivity
for each network is the average correlation of all voxels
within a particular thresholded network template mask
(Fig. 1). In nodal connectivity analyses, average correlation
values from voxels within each node pair were taken as meas-
ures of connectivity strength. Detailed acquisition parameters,
processing information, derivation of network templates, node
maps, and whole network measurements can be found in prior
publications (Schultz et al., 2014, 2017; Shaw et al., 2015;

Table 1 Participants from the DIAN

Group n Mean age APOE "4
carriers, n

Sex,

F/M

Estimated

years to

symptom

onset

Families, n Mutation

type, n

(PSEN1/PSEN2/

APP)

Mean

movement

(mm/TR)

Mean

unusable

volumes, n

M + CDR0 66 33.9 � 7.99 14 41/25 �13.48 � 7.36 41 49/6/11 0.060 � 0.033 5.00 � 2.88

M + CDR0.5 29 43.62 � 11.55 9 19/10 �2.66 � 7.84 24 25/2/2 0.062 � 0.037 4.21 � 2.37

M + CDR1 + 17 49.35 � 7.84 2 7/10 3.24 � 8.05 16 15/0/2 0.090 � 0.034 4.82 � 2.27

Values are presented as mean � SD. TR = repetition time.
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Buckley et al., 2017). Additional details of DIAN functional
connectivity MRI acquisitions and discussion of site as a po-
tential covariate can be found in Chhatwal et al. (2013) and
Thomas et al. (2014).

Imaging biomarkers of preclinical
Alzheimer’s disease

Using acquisition parameters and processing described in the
Supplementary material, baseline structural MRI, 18F-FDG-PET,
and 11C-Pittsburgh compound B (PiB) PET were used as imaging
biomarkers of preclinical Alzheimer’s disease in CNE subjects from
HABS. PiB-PET was measured in a large cortical region of interest
including frontal, lateral, and retrosplenial areas that largely ex-
cludes primary sensory regions of cortex (frontal, lateral, and ret-
rosplenial regions, FLR). Cerebellar grey was used as a reference
region for PiB-PET. FDG measures were made using the Landau
meta-region of interest (Landau et al., 2011) as operationalized by
Jack et al. (2012), and implemented in HABS by Mormino et al.
(2014). This meta-region of interest consists of regions in the
lateral parietal, lateral temporal, and posterior midline normalized
to pons. Measures of hippocampal volume were obtained from
Freesurfer (https://surfer.nmr.mgh.harvard.edu/), and were cor-
rected for total intracranial volume as in Mormino et al. (2014).

Prior work from HABS has shown that amyloid-b + CNE with
evidence of neurodegeneration (assessed using FDG and hippo-
campal volume) show greater longitudinal decreases in global
cognition than others within the cohort, suggesting this is an
at-risk group for progression to Alzheimer’s disease (Mormino
et al., 2014). We applied a two component Gaussian mixture
model to separate HABS participants into amyloid-b+ and amyl-
oid-b� groups (Mormino et al., 2014), using a 90% probability
threshold for belonging to amyloid-b + and amyloid-b� distribu-
tions. This resulted in a PiB FLR DVR threshold of 41.133 and
51.230 for amyloid-b� and amyloid-b + groups, respectively.

Of 234 potential subjects, 148 were classified as amyloid-b�,
58 as amyloid-b+ , and 28 as amyloid-b intermediate. Markers
of neurodegeneration (FDG and hippocampal volume) were con-
verted to z-scores, combined, and then split into tertiles. Using
this information, we separated the HABS sample into groups
likely to show decline due to Alzheimer’s disease (CNE AD + )
and those unlikely to show decline due to Alzheimer’s disease
(CNE AD�). Individuals in the CNE AD + group were required
to be amyloid-b+ and in the lower tertile of the HABS sample
for FDG-PET metabolism and/or hippocampal volume (30 of 58
amyloid-b + participants). Individuals with low amyloid and who
were not in the lowest tertile for either FDG-PET or hippocampal
volume were placed in the CNE AD� group (59 of 148 amyloid-
b� participants). Individuals with non-concordant biomarkers or
intermediate amyloid-b levels (CNE Alzheimer’s disease
Intermediate) were not included in the main analyses to focus
on individuals at greatest risk of cognitive decline and to
reduce ambiguity as to whether variations in connectivity meas-
urements were attributable to preclinical Alzheimer’s disease.
Comparisons of CNE AD� and CNE AD + to CNE
Alzheimer’s disease Intermediate are included in the
Supplementary material.

Statistics

Independent sample t-tests and ANOVA were used to compare
single or composite network connectivity measurements across
groups (Figs 2–4) and to derive effect sizes (Cohen’s d; Cohen,
1988) using R version 3.2.0 (The R Foundation for Statistical
Computing). Degradation patterns are shown and discussed
primarily using effect sizes measures, as sample sizes vary
across clinical groups and comparisons, limiting the interpret-
ability of relative P-values across comparisons. P-values shown
have not been corrected for multiple comparisons in these ex-
ploratory analyses, as the impact and severity of such

Figure 1 Cortical intrinsic connectivity networks chosen for analysis. These networks fall into three broad classes: Four cognitive

networks (default, dorsal attention, salience, and control) thought to be involved in directed attention, memory and other aspects of cognition;

two networks centred on primary and higher order visual cortices (primary visual and extrastriate visual); and a motor network including the pre-

central gyrus and supplementary motor regions. Map threshold of P4 0.05 (family-wise error corrected). Adapted from Schultz et al. (2014).
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Figure 2 Single and multi-network composite comparisons in autosomal dominant Alzheimer’s disease mutation carriers.

Seven single-network connectivity measurements (white backgrounds, A–G) and three composite connectivity measurements (grey backgrounds,

H–J) were calculated for individuals carrying known pathogenic mutations leading to autosomal dominant Alzheimer’s disease. Mutation carriers

(M + ) were separated according to their CDR at the time of imaging (CDR0, 0.5 and 51). Filled diamonds indicate means for each group.

*P4 0.05, **P4 0.005, ***P4 0.001.

Figure 3 Single and multi-network composite comparisons in young and CNE participants. Seven single-network connectivity

measurements (white backgrounds, A–G) and three composite connectivity measurements (grey backgrounds, H–J) were calculated for young

individuals and cognitively normal elderly with (CNE AD + ) and without (CNE AD�) imaging biomarkers suggestive of preclinical Alzheimer’s

disease. Filled diamonds indicate means for each group. *P4 0.05, **P4 0.005, ***P4 0.001.
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correction would vary based on the effect and sample size for
each comparison. No statistical comparisons were made across
clinical cohorts (DIAN versus HABS) to avoid confounds of dif-
fering MRI acquisitions, variability in testing, and variations in
inclusion/exclusion criteria. Differential patterns of network deg-
radation were examined with linear mixed effects models includ-
ing a network or network type (i.e. Cognitive or Visual or
Motor) � Clinical Group interaction term. To statistically com-
pare the relative degree of network change in one network (or
network type) to another, significant interaction terms were fol-
lowed with pairwise, post hoc comparisons of each network or
network type pair to determine the direction and statistical sig-
nificance of each comparison. Covariates for quality of measure-
ment (movement during scanning, number of unusable functional
MRI volumes) were included in all models. As in prior functional
connectivity MRI publications from the DIAN sample (Chhatwal
et al., 2013; Thomas et al., 2014), site was not included as a
covariate for functional connectivity MRI analyses (see Chhatwal
et al., 2013 for discussion). Further information on covariate se-
lection can be found in the Supplementary material.

Results

Participant demographics

For ADAD, we compared connectivity data from seven in-

trinsic connectivity networks in 112 individuals known to

carry pathogenic mutations leading to dominantly inherited

Alzheimer’s disease (Fig. 1). Of these individuals, 66 were

assessed as having a global CDR (Morris, 1993) of 0

[mutation carriers (M + ) CDR0], 29 had a CDR of 0.5

(M + CDR 0.5), and 17 had a CDR of 51 (M +

CDR1 + ; 12 CDR 1, 3 CDR 2, 2 CDR 3). As expected,

the more impaired mutation carriers were older than the

less impaired mutation carriers (Table 1).

Connectivity measures across these same seven networks

(Fig. 1) were also calculated for 170 HABS participants,

including 81 young control subjects and 89 CNE.

Irrespective of biomarker status, CNE individuals had

MMSE scores of 426, a global CDR of 0, and scored

above an education-adjusted cut-off for Logical Memory

IIa (Aisen et al., 2010). As described above, PiB-PET,

FDG-PET, and MRI-based hippocampal volume measure-

ments were used to stratify CNE subjects into two groups:

CNE AD� (n = 59) and CNE AD + (n = 30). The goal of

separating CNE individuals into CNE AD + and CNE

AD� populations was to achieve a clearer separation be-

tween CNE likely at risk of impending cognitive decline

due to Alzheimer’s disease from those less likely to show

cognitive decline. No baseline differences in global cogni-

tion or episodic memory were present between CNE AD�

and CNE AD + groups at the time of enrolment in the

study.

Figure 4 Patterns of connectivity change in ageing and Alzheimer’s disease. (A, left) Connectivity changes in ADAD were assessed by

comparing asymptomatic ADAD mutation carriers (M + CDR0) to mildly impaired ADAD mutation carriers (M + CDR0.5) and more impaired

ADAD mutation carriers (M + CDR1 + ). Middle: Connectivity changes in preclinical, late-onset Alzheimer’s disease were assessed by comparing

cognitively normal elderly individuals with (CNE AD + ) and without (CNE AD�) imaging biomarker evidence of Alzheimer’s disease pathology.

Right: Connectivity changes with age in the absence of Alzheimer’s disease pathology were assessed by comparing cognitively normal young and

elderly individuals (CNE AD�). (B and C) Polar plots of data from A showing similar patterns of connectivity change in preclinical Alzheimer’s

disease and ADAD (B; blue = M + CDR0 versus 0.5; red = M + CDR0 versus 1 + ; green = CNE AD� versus CNE AD + ) and differential change

in ageing and Alzheimer’s disease (C; red = M + CDR0 versus 1 + ; black = Young versus CNE AD�). Absolute values for each effect are shown.

Confidence intervals for effect size are listed in Supplementary Table 1. **P4 0.005 and *P4 0.05.
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Network degradation in autosomal-
dominant Alzheimer’s disease

ANOVA across M + CDR0, M + CDR 0.5, and M +

CDR1 + showed significant differences in the default

[F(2,107) = 22.98, P50.001], salience [F(2,107) = 11.89,

P5 0.001], dorsal attention [F(2,107) = 18.55, P5 0.001],

control [F(2,107) = 5.80, P5 0.01], primary visual

[F(2,107) = 7.32, P = 0.001] and motor networks

[F(2,107) = 4.11, P = 0.02]. No significant difference across

groups was observed in the extrastriate visual network

[F(2,107) = 1.72, P = 0.181]. Post hoc contrasts between clin-

ical groups are shown in Fig. 2 and Supplementary Table 1.

To compare network degradation in one network com-

pared to others statistically, we performed a separate ana-

lysis with network as a seven-level repeated measure for

each subject, and included the interaction between

Clinical Group and Network. This analysis demonstrated

that particular networks were differentially degraded in

ADAD [Network � Group Interaction F(12,654) = 3.62,

P = 0.001]. To examine this interaction more closely, com-

parisons between network pairs were performed. Analyses

showed default and dorsal attention network connectivity

decreased with increasing CDR to a significantly greater

extent than control [default: F(2,109) = 14.96, P5 0.001;

dorsal attention: F(2,109) = 6.03, P = 0.003], primary

visual [default: F(2,109) = 6.711, P = 0.002; dorsal atten-

tion: F(2,109) = 5.372, P = 0.006], extrastriate visual [de-

fault: F(2,109) = 7.657, P50.001; dorsal attention:

F(2,109) = 4.747, P = 0.011] and motor network connectiv-

ity [default: F(2,109) = 7.923, P5 0.001; dorsal attention:

F(2,109) = 4.364, P = 0.015]. The salience network showed

greater degradation with increasing CDR than the control

network [F(2,109) = 4.363, P = 0.015].

Network degradation in ageing

To identify changes in connectivity with ageing in the ab-

sence of early Alzheimer’s disease pathology, we compared

CNE with no imaging biomarker evidence of preclinical

Alzheimer’s disease (CNE AD�) to normal young subjects.

Connectivity was decreased broadly across networks, with

the exception of the motor network (Fig. 3). Specifically,

we observed significantly decreased default, dorsal atten-

tion, salience, control, primary visual, and extrastriate

visual network connectivity in CNE AD� as compared to

young subjects (Fig. 3 and Supplementary Table 1).

Similar to ADAD comparisons, secondary analyses were

performed to examine interactions between network and

group (young versus CNE AD�). A significant

Network � Group interaction suggested that not all net-

works were equally impacted with ageing [F(5,720) = 5.949,

P5 0.001], and post hoc pairwise analysis demonstrated the

motor network showed significantly less degradation than

primary visual [F(1,144) = 20.196, P5 0.001], extrastriate

visual [F(1,144) = 12.689, P5 0.001], default [F(1,144) =

4.221, P = 0.042], dorsal attention [F(1,144) = 7.617,

P = 0.007], control [F(1,144) = 10.076, P = 0.002], and sali-

ence networks [F(1,144) = 5.070, P = 0.0259]. In addition,

the default [F(1,144) = 11.563, P50.001], dorsal attention

[F(1,144) = 8.375, P = 0.004], and salience [F(1,144) = 8.043,

P = 0.005] networks showed significantly less degradation

with age as compared to the primary visual network.

Other pairwise comparisons were non-significant at

P4 0.05.

Network degradation in preclinical
Alzheimer’s disease

To identify network degradation in preclinical sporadic

Alzheimer’s disease, we compared CNE with and without

imaging biomarker evidence of Alzheimer’s disease path-

ology (CNE AD + and CNE AD�, respectively). Single net-

work analyses showed decreased functional connectivity in

CNE AD + for the default and salience networks (Fig. 3

and Supplementary Table 1). Participants with preclinical

Alzheimer’s disease also showed a preferential degradation

of certain networks over others [Network � Group inter-

action: F(6,522) = 2.144, P = 0.047]. Post hoc pairwise ana-

lyses demonstrated significantly decreased default and

salience network connectivity in CNE AD� as compared

to CNE AD + (Fig. 3 and Supplementary Table 1). No

significant differences in primary visual, extrastriate

visual, or motor network connectivity were observed be-

tween CNE AD� and AD + subjects (all P4 0.2).

Supplementary analyses examined CNE with intermedi-

ate or indeterminate imaging biomarkers of Alzheimer’s

disease (e.g. intermediate range PiB-PET, discordant PiB

and neurodegenerative biomarker profiles; CNE

Alzheimer’s disease intermediate). As compared to CNE

AD�, the CNE Alzheimer’s disease intermediate group

showed significantly lower motor (d = 0.45; P = 0.004)

and salience network connectivity (d = 0.3, P = 0.05;

Supplementary Table 3 and Supplementary Fig. 3).

Nodal connectivity

The foregoing observations used whole-network functional

connectivity MRI measurements to assess connectivity

changes in ageing and Alzheimer’s disease. This type of

analysis does not directly examine between-network

(inter-network) connectivity and leaves open the possibility

that focal failure of one or a few nodes within a network

may be driving the whole network effects present in the

data. To address these possibilities and to derive more in-

formation about the anatomical patterns of network deg-

radation, we performed a confirmatory connectivity

analysis in which each network was decomposed into indi-

vidual nodes and connectivity was broadly examined be-

tween all nodes (within and between networks). We

assessed connection strength in both positively- and nega-

tively-coupled node pairs (correlations and anti-correl-

ations, respectively). Nodes corresponded to the central

structures in network template maps used for whole
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network analyses (Figs 1 and 5A, Supplementary Fig. 1 and

Supplementary Video 1). As with the whole network tem-

plates, node maps were derived on an outside sample of

675 normal young subjects imaged as part of the Brain

Genomics Superscript Project.

Mirroring whole network connectivity patterns, decreases

in within-network correlations in the default and dorsal

attention networks were apparent in early ADAD and

more pronounced in more advanced disease (Fig. 5C and

D). Disrupted within-network connectivity in default and

dorsal attention network nodes was also observed in pre-

clinical Alzheimer’s disease, again similar to whole network

connectivity patterns (Fig. 5). In advanced ADAD (Fig. 6A),

nearly every connection within the default (24 of 28 con-

nections significantly degraded) and dorsal attention net-

works was compromised (14 of 15 connections

significantly degraded; Fig. 6B, map threshold of

P50.05). The nodal connectivity pattern in the normal

ageing comparison showed broadly distributed connectivity

decreases in both cognitive and visual networks, consistent

with the whole network findings (Figs 5E and 6B).

In examining connections degraded in ADAD, more

within-network connections were significantly degraded in

advanced ADAD as compared to between-network connec-

tions, and more connections between positively coupled

nodes (correlations) were degraded as compared to connec-

tions between negatively coupled nodes (anti-correlations).

Specifically, 57 of 104 (54.8%) within-network connections

(many in cognitive networks) were significantly degraded in

advanced ADAD, compared with 36 of 562 (6.4%) be-

tween-network connections. Among significantly degraded

connections (threshold of P4 0.05, Fig. 6), the mean effect

for decreased within-network connections (0.81 � 0.23

SD; thresholded at P4 0.05, as in Fig. 6) was signifi-

cantly higher than the mean effect for between-network

connections [0.59 � 0.14 SD; t(92) = 6.044, P5 0.001;

Figure 5 Nodal connectivity, grouped by network. Within- and between-network positive connections lost in preclinical Alzheimer’s

disease, ADAD, and normal ageing are shown. (A) Cortical networks were separated into their constituent nodes prior to connectivity analysis.

The size and anatomic locations of each node are shown in A above, with colours to indicate network membership for each node. Abbreviations

and further anatomic detail can be found in Supplementary Fig. 1 and Supplementary Video 1. Extrastriate and primary visual networks are

combined. (B) CNE AD + participants showed lower connection strength as compared to CNE AD� especially within the default and dorsal

attention networks. (C) ADAD mutation carriers at CDR 0.5 show degraded connectivity as compared to asymptomatic mutation carriers

(CDR0), especially in the default and dorsal attention networks. (D) As a group, ADAD mutation carriers with dementia (CDR1 + ) show

decreased connectivity across several networks, with the greatest change in the default and dorsal attention networks. As group level changes in

this comparison were larger than in B, C and E, a broader scale range was used (indicated with yellow highlights). (E) Decreases in connectivity

seen when comparing normal young participants with CNE AD� were broadly distributed across networks, with the greatest change in visual

networks.
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Figs 5C, D and 6A]. Anti-correlations accounted for 14 of

36 (38.9%) significantly degraded between-network con-

nections in ADAD (Fig. 6A).

These patterns were less clear in ageing comparisons. The

magnitude of connectivity loss was generally lower in

ageing comparisons relative to what was observed in

advanced ADAD, and decreased between-network connec-

tions accounted for a larger proportion of the lost connect-

ivity overall (Figs 5C and 6B). In the ageing comparison, 54

of 104 (51.9%) within-network connections were signifi-

cantly degraded at P50.05, with a mean effect size

(cohen’s d) of 0.53 � 0.13. Seventy-two of a possible 562

(12.8%) between-network connections were significantly

degraded in the same comparison, with a mean effect size

of 0.46 � 0.10. Of these, 72 degraded between network

connections, 47 were anti-correlations (65.3%; Fig. 6B,

map threshold P5 0.05).

Formalizing patterns of network
degradation

In comparing ADAD and ageing, partially overlapping de-

creases in single network connectivity in the default, dorsal

attention, control, and salience networks reduce the utility

of any individual network measurements to distinguish

ageing from Alzheimer’s disease. The whole network ana-

lyses above (e.g. Fig. 4) indicate that the preferential deg-

radation of cognitive networks is seen across the spectrum

of ADAD and preclinical Alzheimer’s disease. However,

visual and cognitive networks are both similarly decreased

with normal ageing in the absence of Alzheimer’s disease

biomarkers.

Accordingly, we explored the possibility that composite

connectivity measurements that reflect changes in cognitive

network connectivity relative to visual network connectivity

could be useful in disambiguating Alzheimer’s disease-

related from age-related network degradation. An average

of whole network measurements across the four cognitive

networks (cognitive composite) decreased with both ageing

and Alzheimer’s disease (Figs 2H and 3H). Similar effect

sizes for cognitive network degradation were seen when

comparing asymptomatic to mildly impaired ADAD muta-

tion carriers (M + CDR0 to M + CDR0.5) and young sub-

jects to CNE without biomarkers suggestive of Alzheimer’s

disease (ageing comparison; Young versus CNE AD�),

indicating that an aggregate measure of cognitive network

connectivity is insufficient to distinguish age and

Alzheimer’s disease-related changes. Average connectivity

in visual networks (visual composite; Figs 2I and 3I)

decreased significantly both in ageing and in late ADAD

comparisons (M + CDR0 versus M + CDR1 + ).

Controlling for visual network connectivity when assessing

cognitive network connectivity (cognitive adjusted for

visual; Figs 2J and 3J) preserved connectivity changes in

ADAD and preclinical Alzheimer’s disease comparisons,

and yielded group differences that were similar in magni-

tude to the unadjusted cognitive composite (Figs 2, 3 and

Supplementary Table 1). In CNE with intermediate imaging

biomarkers of Alzheimer’s disease, adjusting for cognitive

network for visual network connectivity yielded a

A B

Figure 6 Correlations and anti-correlations degraded in ADAD and ageing. (A) Comparing M + CDR0 and M + CDR1 + , degraded

positive correlations in ADAD (warm colours) outnumbered degraded anti-correlations (cool colours). Mirroring whole network connectivity

patterns, the largest number and magnitude of degraded connections were within cognitive networks, particularly the default and dorsal attention

networks. (B) Comparing young subjects to CNE AD�, the preferential degradation of positive connections in the default and dorsal attention

networks was not evident, and more inter-network connections and anti-correlations were degraded with ageing as compared to ADAD. Map

threshold P5 0.05.

Network degradation in Alzheimer’s disease versus ageing BRAIN 2018: 141; 1486–1500 | 1495

Downloaded from https://academic.oup.com/brain/article-abstract/141/5/1486/4924520
by National University of Singapore user
on 01 May 2018



composite measure that was intermediate between CNE

AD� and CNE AD + groups (Supplementary Table 3

and Supplementary Fig. 3). Using this same metric, no sig-

nificant difference was seen in the ageing comparison

(Fig. 3J), suggesting this adjusted connectivity metric is rela-

tively insensitive to age-related connectivity change but re-

mains reflective of Alzheimer’s disease-related connectivity

changes that worsen with impairment (Figs 2, 3 and

Supplementary Table 1). In Alzheimer’s disease compari-

sons, a strikingly similar pattern of degraded within- and

between-network connections was seen when comparing

visual network adjusted (Supplementary Fig. 2A–C) and

unadjusted connection strengths (Fig. 5B–D), indicating

that controlling for visual network connectivity did not

alter the observed anatomic pattern or magnitude of net-

work degradation in ADAD and preclinical Alzheimer’s

disease. In contrast, controlling for visual network changes

greatly diminished the magnitude of connectivity changes in

the ageing comparison (Supplementary Fig. 2D), suggesting

that adjusting for visual network connectivity may serve to

highlight AD� over age-related connectivity changes.

Discussion
Across a wide spectrum of impairment and across both

whole network and nodal connectivity measures, we

observed that cognitive networks were preferentially

degraded in ADAD, with clear changes in motor and

visual networks seen only in later, more symptomatic dis-

ease. The preferential degradation of cognitive networks,

especially the default and dorsal attention networks, was

statistically discernible in early symptomatic stages of dis-

ease and was magnified in advanced ADAD. A nascent

form of this same pattern was observed when comparing

older individuals with and without biomarker evidence of

preclinical Alzheimer’s disease, suggesting this Alzheimer’s

disease multi-network degradation pattern is conserved

across a wide clinical spectrum of ADAD and preclinical,

late-onset Alzheimer’s disease. Notably, the multi-network

degradation pattern observed here is generally consistent

with and expands on prior functional connectivity MRI

studies in early- and late-onset Alzheimer’s disease

(Greicius et al., 2004; Zhou et al., 2010; Lehmann et al.,

2013b; Thomas et al., 2014). Relative to prior reports in

ADAD (Chhatwal et al., 2013; Thomas et al., 2014), the

present report utilizes a larger set of networks (with differ-

ential vulnerability to Alzheimer’s disease pathology), in-

cludes subjects with preclinical late-onset Alzheimer’s

disease, and uses an analytic approach that yields substan-

tially larger group differences across ageing and

Alzheimer’s disease comparisons. The effects seen using

whole network measurements were largely similar when

node-to-node connectivity was assessed, with degraded con-

nectivity seen across several nodes within an affected net-

work. Together, the whole network and nodal connectivity

analyses suggest that Alzheimer’s disease pathology prefer-

entially targets connections within cognitive networks, es-

pecially nodes within the default and dorsal attention

networks.

This Alzheimer’s disease-derived pattern contrasted with

what was seen in ageing-focused comparisons, where we

observed that visual networks were degraded to a similar

or larger degree than cognitive networks, with little change

seen in the motor network. This age-related pattern of net-

work degradation is consistent with that described by

Siman-Tov et al. (2016), where age-related changes in

visual and cognitive networks were similar, but changes

in motor network connectivity were less clear. Also in

agreement with Siman-Tov et al. (2016), we observed

age-related decreases in inter-network connectivity and

anti-correlation strength (particularly between cognitive

networks) in our CNE AD� group compared to young

controls. Perhaps owing to the differential sensitivity of

analytic approaches, the age-related degradation of visual

networks seen here and in some prior reports (Onoda et al.,

2012; Siman-Tov et al., 2016) contrasts with findings from

an earlier, seed-based connectivity study in which preserved

visual network connectivity with ageing was reported

(Andrews-Hanna et al., 2007).

Importantly, the decrease in cognitive network connect-

ivity seen across the �50-year span that separates our CNE

AD� and normal young participants is similar to the

amount of change seen when comparing mildly impaired

(CDR 0.5) to asymptomatic ADAD mutation carriers, and

only slightly more than what was seen with preclinical

Alzheimer’s disease. This suggests that while ‘normal

ageing’ itself may decrease default network connectivity,

it does so without the network preferentiality seen in

Alzheimer’s disease and with a magnitude that is substan-

tially smaller than that seen across the Alzheimer’s

Table 2 Participants from the Harvard Aging Brain Study

Group n Age APOE "4
carriers, n

Sex, F/M PiB FLR

DVR

FDG SUVR

(Landau ROI)

Hippocampal

volume (mm3)

Mean movement

(mm/TR)

Mean unusable

volumes, n

CNE AD� 59 70.29 � 4.36 9 41/18 1.08 � 0.03 1.40 � 0.10 8146 � 543 0.092 � 0.060 4.98 � 1.73

CNE AD + 29 78.51 � 5.83 15 19/11 1.43 � 0.13 1.21 � 0.07 6608 � 634 0.109 � 0.050 4.90 � 1.85

Young 86 21.58 � 3.43 NA 39/47 NA NA NA 0.053 � 0.027 4.29 � 1.49

Values are presented as mean � SD.

DVR = distribution volume ratio; FLR = frontal, lateral, and retrosplenial areas; ROI = region of interest; SUVR = standardized uptake value ratio; TR = repetition time.
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disease spectrum. In agreement with a recent study from

Brier and colleagues (2014), this result also highlights the

critical importance of separating CNE with and without

signs of Alzheimer’s disease pathology when assessing

age-related connectivity changes.

Nodal connectivity analyses indicate that diminished

whole network connectivity in ADAD is due to the distrib-

uted failure of nodes within each cognitive network, as

opposed to the focal failure of a particular node within a

network. These nodal connectivity analyses also demon-

strate that even in advanced ADAD, relatively few inter-

network connections and anti-correlations are degraded.

These observations offer indirect support for ‘network dif-

fusion’ models of Alzheimer’s disease progression (Seeley

et al., 2009; Raj et al., 2012, 2015; Zhou et al., 2012;

Iturria-Medina et al., 2014), as the within-network spread

of pathology would be expected to generate progressive

degradation of connections within preferentially targeted

networks. Though functional connectivity MRI is an indir-

ect measure of synaptic integrity, a number of recent stu-

dies suggest that functional connectivity measurements are

underpinned by structural (and presumably synaptic) con-

nections (Honey et al., 2007; Greicius et al., 2009) and that

nodal connectivity patterns are reflected in the differential

atrophy patterns of neurodegenerative diseases (Seeley

et al., 2009; Zhou et al., 2012). As highly connected

nodes group into the same networks, we would expect

the trans-synaptic spread of pathologic protein species to

lead to preferential degradation of within- as compared to

between-network connections. The observations here are

consistent with this prediction, both at the level of whole

networks and node-to-node connectivity.

The presence of relatively few degraded between-network

connections and anti-correlations even in advanced ADAD

(Fig. 6A) contrasts with the much more diffuse pattern seen

in the ageing comparisons. The relatively indiscriminate

connectivity decreases seen with ageing suggests that

ageing alone lacks the distinct network pattern characteris-

tic of Alzheimer’s disease (and likely other neurodegenera-

tive diseases). Lastly, though diffusion of pathology may be

more efficient within-networks, the modest levels of motor

and visual network degradation seen in advanced ADAD

may reflect the less-efficient process of inter-network spread

becoming evident in later stages of disease.

The presence of a consistent multi-network degradation

pattern across a wide range of Alzheimer’s disease coupled

with the observation that alterations in default network

connectivity can be seen in a wide array of disorders

(Sun et al., 2013; Chanraud et al., 2014; Baggio et al.,

2015) indicates both the possibility and potential need to

develop multi-network composites as complements to

single-network connectivity measures (Jones et al., 2016).

Based on the differences between ageing and Alzheimer’s

disease patterns of degradation, we explore a multi-

network composite that retains sensitivity to Alzheimer’s

disease-related connectivity changes while greatly decreas-

ing the influence of across-the-lifespan, age-related changes.

Future studies are needed to optimize disease-specific con-

nectivity composites that could be used to identify at-risk

or very early disease in clinical trial populations, and per-

haps to track treatment-related change in clinical trials.

Additionally, the patterns of connectivity change seen

here in cross-sectional data will need to be verified in

other samples and in longitudinal functional connectivity

MRI analyses, especially as multiple comparisons correc-

tion was not used here to preserve multi-network patterns

across comparisons with widely varying sample and puta-

tive effect sizes.

To focus on early evidence of Alzheimer’s disease-related

network degradation, we used PiB-PET, FDG-PET, and

structural MRI to separate CNE individuals into groups

that were more (CNE AD + ) or less (CNE AD + ) likely

to be on an Alzheimer’s disease trajectory, and used these

groupings in our primary analyses. Brief supplemental

examination of CNE with less clear Alzheimer’s disease

biomarker profiles (CNE Alzheimer’s disease intermediate;

Supplementary Table 3 and Supplementary Fig. 3) suggests

that this intermediate group may show lower cognitive net-

work connectivity than CNE AD�, but with effect sizes

that are smaller than the decreases in CNE AD + relative

to CNE AD�. This result is consistent with longitudinal

studies demonstrating that elderly with intermediate ima-

ging biomarkers of Alzheimer’s disease also show levels

of cognitive decline or diminished practice effect that are

intermediate between low amyloid + low neurodegenera-

tion and high amyloid + high neurodegeneration groups

(e.g. Mormino et al., 2014). This result is also consistent

with a recent report from HABS indicating that decreased

connectivity in the default, salience, and control networks

is a significant predictor of longitudinal cognitive decline,

both alone and synergistically with amyloid burden

(Buckley et al., 2017). However, reductions in motor con-

nectivity in the CNE Alzheimer’s disease intermediate

group relative to CNE AD� were greater than those seen

in CNE AD + , especially in CNE with low amyloid burden

(Supplementary Table 3). This suggests connectivity

changes in the heterogeneous CNE Alzheimer’s disease

intermediate group may be due to factors beyond those

captured solely by Alzheimer’s disease imaging biomarkers.

From a methodological perspective, comparability across

cohorts and diverse clinical populations is enhanced by the

use of a uniform set of network descriptions. These net-

work descriptions are derived entirely out-of-sample, and

are not influenced by the numbers and distribution of sub-

jects in the clinical groups that comprise the comparison,

similar to conventional seed-based analysis approaches and

unlike conventional group independent component analysis

(ICA) approaches (Schultz et al., 2014; Griffanti et al.,

2016). Prior studies from our group using the TBR analytic

method demonstrate that it has potentially greater sensitiv-

ity to young/old group differences than seed-based

approaches, and similar to that of dual-regression ICA

with out-of-sample network descriptions (Schultz et al.,

2014). The results here also suggest that TBR yields
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substantially larger effect sizes in ADAD comparisons than

prior seed-based analyses in the DIAN sample (Thomas

et al., 2014). Lastly, recent work from Frisoni and col-

leagues also suggests that non-seed-based approaches to

connectivity analysis may improve reliability across sessions

(Jovicich et al., 2016).

More broadly, these results suggest that the differential

targeting of intrinsic connectivity networks in neurodegen-

erative disease can be carried forward into multi-network

connectivity measurements that improve on single-network

connectivity measurements. Using multi- or inter-network

composite connectivity measures may be particularly

useful as a means of increasing the specificity of functional

connectivity MRI biomarkers for a particular disease of

interest, and reducing the influence of common confound-

ing conditions. In turn, this disambiguation of a disease

state from a common confound may be useful as a

means for enriching clinical trial populations and to maxi-

mize the utility of functional connectivity MRI as a non-

invasive and relatively inexpensive clinical research tool.
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