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Abstract

Feed-forward convolutional neural networks (CNNs) are currently state-of-the-art
for object classification tasks such as ImageNet. Further, they are quantitatively
accurate models of temporally-averaged responses of neurons in the primate brain’s
visual system. However, biological visual systems have two ubiquitous architectural
features not shared with typical CNNs: local recurrence within cortical areas, and
long-range feedback from downstream areas to upstream areas. Here we explored
the role of recurrence in improving classification performance. We found that
standard forms of recurrence (vanilla RNNs and LSTMs) do not perform well
within deep CNNs on the ImageNet task. In contrast, custom cells that incorporated
two structural features, bypassing and gating, were able to boost task accuracy
substantially. We extended these design principles in an automated search over
thousands of model architectures, which identified novel local recurrent cells and
long-range feedback connections useful for object recognition. Moreover, these
task-optimized ConvRNNs explained the dynamics of neural activity in the primate
visual system better than feedforward networks, suggesting a role for the brain’s
recurrent connections in performing difficult visual behaviors.

1 Introduction

The sensory systems of the brain must detect meaningful patterns in noisy and complex sense data
[James, 1890]. Visual surroundings can reveal objects of positive or negative value, including types
of food, signs of danger, and memorable social partners. These stimuli vary widely in position, pose,
contrast, background, and foreground from one occasion to the next. As a result, object identity is
not easily discerned from low-level image properties [Pinto et al., 2008]. In primates, the visual
system encodes relevant high-level properties so that they may readily guide behavior [Majaj et al.,
2015]. This process can be modeled as a transformation from the original pixel values of an image
into an internal representation [DiCarlo et al., 2012]. A good encoding algorithm is one that exposes
task-relevant features to simple decoding procedures, such as linear classifiers [Hung et al., 2005,
Majaj et al., 2015].
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Recent work has shown that task-optimized deep convolutional neural networks (CNNs) are quantita-
tively accurate models of the primate brain’s visual encoding [Yamins et al., 2014, Khaligh-Razavi
and Kriegeskorte, 2014, Güçlü and van Gerven, 2015]. CNNs trained to recognize ImageNet objects
currently explain the temporally-averaged responses of neurons in the visual system better than any
other model class. Model units from lower, middle, and upper convolutional layers, respectively,
provide the best-known linear predictions of neural evoked responses occurring in the early (area V1
[Khaligh-Razavi and Kriegeskorte, 2014, Cadena et al., 2017]), intermediate (area V4 [Yamins et al.,
2014]), and higher visual cortical areas (inferotemporal cortex, IT, [Khaligh-Razavi and Kriegeskorte,
2014, Yamins et al., 2014]).

However, the primate visual system has additional anatomical structure that is not modeled with
strictly feedforward CNNs. This includes dense local recurrent connections within each cortical
region and long-range connections between different regions, such as feedback from a higher part of
the visual hierarchy to a lower part [Gilbert and Wu, 2013]. The functional roles of recurrence in the
primate brain’s visual system are not well understood. Several conjectures are that recurrence “fills in”
missing data, [Spoerer et al., 2017, Michaelis et al., 2018, Rajaei et al., 2018, Linsley et al., 2018] such
as object parts occluded by other objects; that it “sharpens” representations by top-down attentional
feature refinement, allowing for easier decoding of certain stimulus properties or performance of
certain tasks [Gilbert and Wu, 2013, Lindsay, 2015, McIntosh et al., 2017, Li et al., 2018]; that
it allows the brain to “predict” future stimuli (such as the frames of a movie) [Rao and Ballard,
1999, Lotter et al., 2017, Issa et al., 2018]; or that recurrence “extends” a feedforward computation,
reflecting the fact that an unrolled recurrent network is equivalent to a deeper feedforward network
that conserves on neurons (and learnable parameters) by repeating transformations several times
[Khaligh-Razavi and Kriegeskorte, 2014, Liao and Poggio, 2016, Zamir et al., 2017, Leroux et al.,
2018].

Because existing neural data do not rule out any of these possibilities, computational models might
help to assess them. We therefore attempted to extend the method of goal-driven modeling [Yamins
and DiCarlo, 2016, Mante et al., 2013, Shi et al., 2018] from feedforward CNNs and temporal averages
of neural signal to convolutional recurrent neural networks (ConvRNNs) and neural dynamics. In
particular, we hypothesized that adding recurrence and feedback to CNNs would help these models
perform some ethologically-relevant task and that such an augmented network would better account
for the fine-timescale trajectories of neural responses in the visual pathway.

Although CNNs augmented with recurrence have been used to solve relatively simple variants of
occlusion and future-prediction tasks [Spoerer et al., 2017, Lotter et al., 2017], these models have
neither been shown to generalize to harder tasks already performed by feedforward CNNs — such
as recognizing objects in the ImageNet dataset [Deng et al., 2009, Krizhevsky et al., 2012] — nor
explained neural responses as well as ImageNet-optimized CNNs do. As of this writing, object
recognition on ImageNet is the only task known to produce CNN activation patterns comparable to
those of neurons throughout visual cortex [Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al.,
2014, Cadena et al., 2017]. In fact, because of its wide variety and complexity, ImageNet contains
many images with properties that might make use of recurrent processing according to the hypotheses
described above (e.g. heavy occlusion, the presence of multiple foreground objects, etc). Moreover,
some of the most effective recent solutions to ImageNet (e.g. the ResNet models [He et al., 2016])
repeat the same structural motif across many layers, which suggests that they might be approximable
by the temporal unrolling of shallower recurrent networks [Liao and Poggio, 2016]. We therefore
chose to explore whether recurrence could improve classification performance on the ImageNet
dataset. Although other work has used the output of CNNs as input to RNNs to solve visual tasks
such as object segmentation [McIntosh et al., 2017], here we integrate recurrent structures within the
CNN itself, as such structures have been ubiquitously observed in the neuroscience literature.

We found that standard recurrent cell types (e.g. vanilla RNNs, LSTMs [Elman, 1990, Hochreiter and
Schmidhuber, 1997]) do not increase ImageNet performance above parameter-matched feedforward
baselines. However, we designed novel local cell architectures, embodying structural properties
useful for integration into CNNs, that do. To identify even better structures within the large space of
model architectures, we then performed an automated search over thousands of models that varied in
their local recurrent cells and long-range feedback connections. Strikingly, this procedure discovered
new patterns of recurrence not found in conventional RNNs: for instance, the most successful
models exclusively used depth-separable convolutions for their local recurrent connections, which
multiplicatively gated the networks’ ResNet-like feedforward backbone. In addition, a small subset
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Figure 1: Schematic of model architecture. Convolutional recurrent networks (ConvRNNs) have a
combination of local recurrent cells and long-range feedback connections added on top of a CNN
backbone. In our implementation, propagation along each black or red arrow takes one time step (10
ms) to mimic conduction delays between cortical layers.

of long-range feedback connections boosted task performance even as the majority had a neutral or
negative effect. Overall this search resulted in recurrent models that matched the performance of a
much deeper feedforward architecture (ResNet-34) while using only ∼ 75% as many parameters.
Finally, comparing recurrent model features to neural responses in the primate visual system, we found
that ImageNet-optimized ConvRNNs provide a quantitatively accurate model of neural dynamics
at a 10 millisecond resolution across intermediate and higher visual cortical areas. These results
therefore offer a model of how local and long-range recurrence in the visual system might be adapted
for performing object recognition in the primate visual system.

2 Methods

Computational Architectures. To explore the architectural space of ConvRNNs, we used the
Tensorflow library [Abadi et al., 2016] to augment standard CNNs with both local and long-range
recurrence (Figure 1). Because we sought eventually to compare these models with neural data,
it was critical that time flow realistically. Conduction from one area to another in visual cortex
takes approximately 10 milliseconds (ms) [Mizuseki et al., 2009], with signal from photoreceptors
reaching IT cortex at the top of the ventral stream by 70-100 ms. On the other hand, neural dynamics
indicating potential recurrent connections take place over the course of 100-200 ms [Issa et al., 2018].
A single feedforward volley of responses thus cannot be treated as if it were instantaneous relative
to the timescale of recurrence and feedback. Hence, rather than treating each entire feedforward
pass from input to output as one integral time step, as is normally done with RNNs [Spoerer et al.,
2017], each time step in our models corresponds to a single feedforward layer processing its input
and passing it to the next layer. This choice required an unrolling scheme different from that used in
the standard Tensorflow RNN library, the code for which (and for all of our models) can be found at
https://github.com/neuroailab/tnn.

Within each ConvRNN layer, feedback inputs from higher layers are resized to match the spatial
dimensions of the feedforward input to that layer. Both types of input are processed by standard
2-D convolutions. If there is any local recurrence at that layer, the output is next passed to the
recurrent cell as input. Feedforward and feedback inputs are combined within the recurrent cell (see
Supplemental Methods.) Finally, the output of the cell is passed through any additional nonlinearities,
such as max-pooling. The generic update rule for the discrete-time trajectory of such a network
is thus H`

t+1 = C`

(
F`

(⊕
j 6=`R

j
t

)
, H`

t

)
, and R`t = A`(H

`
t ), where R`t is the output of layer `

at time t and H`
t is the hidden state of the locally recurrent cell C` at time t. A` is the activation

function and any pooling post-memory operations, and ⊕ denotes concatenation along the channel
dimension with appropriate resizing to align spatial dimensions. The learned parameters of such
a network consist of F`, comprising any feedforward and feedback connections coming into layer
` = 1, . . . , L, and any of the learned parameters associated with the local recurrent cell C`.
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In this work, all forms of recurrence add parameters to the feedforward base model. Because this
could improve task performance for reasons unrelated to recurrent computation, we trained two
types of control model to compare to ConvRNNs: (1) Feedforward models with more convolution
filters (“wider”) or more layers (“deeper”) to approximately match the number of parameters in
a recurrent model; and (2) Replicas of each ConvRNN model unrolled for a minimal number of
time steps, defined as the number that allows all model parameters to be used at least once. A
control model from this second class has exactly the same number of parameters as its fully unrolled
comparison ConvRNN, so any increase in performance from unrolling longer can be attributed
to recurrent computation. Fully and minimally unrolled ConvRNNs were trained separately with
identical learning hyperparameters.

3 Results

Novel RNN Cell Structures Improve Task Performance. We first tested whether augmenting
CNNs with standard RNN cells, such as vanilla RNNs and LSTMs, could improve performance
on ImageNet object recognition (Figure 2a). We found that introducing these cells added a small
amount of accuracy when introduced into an AlexNet-like 6-layer feedforward backbone (Figure 2b).
However, there were two problems with these recurrent architectures: first, these ConvRNNs did not
perform substantially better than parameter-matched minimally unrolled controls, suggesting that the
observed performance gain was due to an increase in the number of unique parameters rather than
recurrent computation. Second, making the feedforward model wider or deeper yielded an even larger
performance gain than adding these standard RNN cells, but with fewer parameters. Adding other
recurrent cell structures from the literature, including the UGRNN and IntersectionRNN, had similar
effects to adding LSTMs (data not shown) [Collins et al., 2017]. This suggested that standard RNN
cell structures, although well-suited for a range of temporal tasks, are less well-suited for inclusion
within deep CNNs.

We speculated that this was because standard cells lack a combination of two key properties: 1)
Gating, in which the value of a hidden state determines how much of the bottom-up input is passed
through, retained, or discarded at the next time step; and 2) Bypassing, where a zero-initialized
hidden state allows feedforward input to pass on to the next layer unaltered, as in the identity shortcuts
of ResNet-class architectures (Figure 2a, top left.) Importantly, both of these features are thought
to address the problem of gradients vanishing as they are backpropagated to early time steps of a
recurrent network or to early layers of a deep feedforward network, respectively. LSTMs employ
gating, but no bypassing, as their inputs must pass through several nonlinearities to reach their output;
whereas vanilla RNNs do bypass a zero-initialized hidden state, but do not gate their input (Figure 2a).

We thus implemented recurrent cell structures with both features to determine whether they function
better than standard cells within CNNs. One example of such a structure is the “Reciprocal Gated
Cell”, which bypasses its zero-initialized hidden state and incorporates LSTM-like gating (Figure 2a,
bottom right, see Supplemental Methods for the cell equations). Adding this cell to the 6-layer
CNN improved performance substantially relative to both the feedforward baseline and minimally
unrolled, parameter-matched control version of this model. Moreover, the Reciprocal Gated Cell
used substantially fewer parameters than the standard cells to achieve greater accuracy (Figure 2b).

However, this advantage over LSTMs could have resulted from an accidentally better choice of
training hyperparameters for the Reciprocal Gated Cells. It has been shown that different RNN
structures can succeed or fail to perform a given task because of differences in trainability rather than
differences in capacity [Collins et al., 2017]. To test whether the LSTM models underperformed
for this reason, we searched over training hyperparameters and common structural variants of
the LSTM to better adapt this local structure to deep convolutional networks, using hundreds of
second generation Google Cloud Tensor Processing Units (TPUv2s). We searched over learning
hyperparameters (e.g. gradient clip values, learning rate), as well as structural hyperparameters
separately for each layer (e.g. gate convolutional filter sizes, channel depth, whether or not to use
peephole connections, etc). While this did yield a better LSTM-based ConvRNN, it did not eclipse
the performance of the smaller Reciprocal Gated Cell-based ConvRNN; moreover, applying the same
hyperparameter optimization procedure to the Reciprocal Gated Cell models equivalently increased
that architecture class’ performance and further reduced its parameter count (Figure 2b). Taken
together, these results suggest that the choice of local recurrent structure strongly affects the accuracy
of a ConvRNN on a challenging object recognition task. Although previous work has shown that
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Figure 2: Comparison of local recurrent cell architectures. (a) Architectural differences be-
tween ConvRNN cells. Standard ResNet blocks and vanilla RNN Cells have bypassing (see text).
The LSTM cell has gating, denoted by ‘T’-junctions, but no bypassing. The Reciprocal Gated Cell has
both. (b) Performance of various ConvRNN and feedforward models as a function of number
of parameters. Colored points incorporate the respective RNN cell into the the 6-layer feedforward
architecture (“FF”). ‘T’ denotes number of unroll steps. Hyperparameter-optimized versions of the
LSTM and Reciprocal Gated Cell ConvRNNs are connected to their non-optimized versions by black
lines.

Figure 3: ConvRNN hyperparametrization and search results. (a) Hyperparametrization of
local recurrent cells. Arrows indicate connections between cell input, hidden states, and output.
Question marks denote optional connections, which may be conventional or depth-separable convolu-
tions with a choice of kernel size. Feedforward connections between layers (`− 1 out, ` in, and `
out) are always present. Boxes with question marks indicate a choice of multiplicative gating with
sigmoid or tanh nonlinearities, addition, or identity connections (as in ResNets.) Finally, long-range
feedback connections from `+ k out may enter at either the local cell input, hidden state, or output.
(b) ConvRNN search results. Each blue dot represents a model, sampled from hyperparameter
space, trained for 5 epochs. The orange line is the average performance of the last 50 models. The
red line denotes the top performing model at that point in the search.

standard RNN structures can improve performance on simpler object recognition tasks, these gains
have not been shown to generalize to more challenging datasets such as ImageNet [Liao and Poggio,
2016, Zamir et al., 2017]. Difficult tasks may therefore be needed to differentiate the capacity of
different recurrent architectures.

Hyperparameter Optimization for Deeper Recurrent Architectures. The success of Reciprocal
Gated Cells on ImageNet prompted us to search for even better-adapted recurrent structures, in
the context of deeper, more realistic feedforward backbones. In particular, we designed a novel
search space over ConvRNN architectures that generalized that cell’s use of gating and bypassing.
To measure the quality of a large number of architectures, we installed RNN cell variants in a
convolutional network based on the ResNet-18 model [He et al., 2016]. Deeper ResNet models,
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Figure 4: Optimal local recurrent cell motif and global feedback connectivity. (a) RNN Cell
structure from the top-performing search model. Red lines indicate that this hyperparameter
choice (connection and filter size) was chosen in each of top unique models the search (red line
in 3b.) KxK denotes a convolution and dsKxK a depth-separable convolution with filter size KxK.
(b) Long-range feedback connections from the search. (Top) Each trace shows the proportion of
models in a 100-sample window that have a particular feedback connection. (Bottom) Each bar
indicates the difference between the median performance of models with a given feedback and the
median performance of models without that feedback. Colors correspond to the same feedbacks
as above. (c) Performance of models fully trained on 128px-size ImageNet. We compared the
performance of ResNet-18, an 18-layer feedforward base model (basenet) modeled after ResNet-18,
the median model from the search with or without global feedback connectivity, and its minimally-
unrolled control (T = 12). The “Random Model” was selected randomly from the initial, random
phase of the model search. Parameter counts in millions are shown on top of each bar. ResNet models
were trained as in [He et al., 2016] but with 128px images to compare to ConvRNNs.

such as ResNet-34, reach higher performance on ImageNet and therefore provide a benchmark for
how much recurrent computation could substitute for feedforward depth in this model class (see
below). Recurrent architectures varied in (a) how multiple inputs and hidden states were combined to
produce the output of each cell; (b) which linear operations were applied to each input or hidden state;
(c) which point-wise nonlinearities were applied to each hidden state; and (d) the values of several
additive and multiplicative constants (Figure 3a). The original Reciprocal Gated Cell corresponded
to a single point within this large hyperparameter space. We simultaneously searched over all possible
long-range feedback connections, which use the output of a later layer as input to an earlier ConvRNN
layer or cell hidden state. Finally, we varied learning hyperparameters of the network, such as learning
rate and number of time steps to present the input image.

Since we did not want to make assumptions about how hyperparameters interact, we jointly optimized
architectural and learning hyperparameters using a Tree-structured Parzen Estimator (TPE) [Bergstra
et al., 2011], a type of Bayesian algorithm which searches over continuous and categorical variable
configurations (see Supplemental Methods for details of the search.) This procedure trained hundreds
of models simultaneously, each for 5 epochs. To reduce the amount of search time, we trained all
models on 128 px ImageNet images. For CNNs, performance on images this size nearly equals
performance on full size images [Mishkin et al., 2016].

Most models in this architecture space failed. In the initial TPE phase of randomly sampling
hyperparameters, more than 80% of models either failed to improve task performance above chance
or had exploding gradients (Figure 3b, bottom left of scatter plot.) However, over the course of
the search, an increasing fraction of the models reached higher performance. The median and peak
sample performance increased over the next ∼ 7000 model samples, with the best model reaching
performance >15% higher than the top model from the initial phase of the search (Figure 3b). Like
the contrast between LSTMs and Reciprocal Gated Cells, these dramatic improvements further
support our hypothesis that some recurrent architectures are substantially better than others for object
recognition at scale.

Sampling thousands of recurrent architectures allowed us to ask which structural features contribute
most to task performance and which are relatively unimportant. Because TPE does not sample
models according to a stationary parameter distribution, it is difficult to infer the causal roles of
individual hyperparameters. Still, several clear patterns emerged in the sequence of best-performing
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architectures over the course of the search (Figure 3b, red line). These models used both bypassing
and gating within their local RNN cells; depth-separable convolutions for updating hidden states,
but conventional convolutions for connecting bottom-up input to output (Figure 4a); and several
key long-range feedbacks, which were “discovered” early in the search, then subsequently used in
the majority of models (Figure 4b). Overall, these recurrent structures act like feedforward ResNet
blocks on their first time step but incorporate a wide array of operations on future time steps, including
many of the same ones selected for in other work that optimized feedforward modules [Zoph et al.,
2017]. Thus, this diversity of operations and pathways from input to output may reflect a natural
solution for object recognition, whether implemented through recurrent or feedforward structures.

If the primate visual system uses recurrence in lieu of greater network depth to perform object
recognition, then a shallower recurrent model with a suitable form of recurrence should achieve
recognition accuracy equal to a deeper feedforward model [Liao and Poggio, 2016]. We therefore
tested whether our search had identified such well-adapted recurrent architectures by fully training a
representative ConvRNN, the model with the median five-epoch performance after 5000 TPE samples.
This median model reached a final Top1 ImageNet accuracy equal to a ResNet-34 model with nearly
twice as many layers, even though the ConvRNN used only ∼ 75% as many parameters (ResNet-34,
21.8 M parameters, .684 Validation Top1; Median ConvRNN, 15.5 M parameters, .684 Validation
Top1.) Neither the minimally unrolled control version of this model nor a fully unrolled model from
the random phase of the search performed substantially better than ResNet-18, despite using as many
or or more parameters (Figure 4d). Together these results demonstrate that the median model uses
recurrent computations to perform object recognition and that particular features of its recurrent
architecture, found through hyperparameter optimization, are required for its improved accuracy.
Thus, given well-selected forms of local recurrence and long-range feedback, a ConvRNN can do the
same challenging visual task as a deeper feedforward CNN.

ConvRNNs Capture Neuronal Dynamics in the Primate Visual System. ConvRNNs produce
a dynamic time series of outputs given a static input, unlike feedforward networks. While these
recurrent dynamics could be used for tasks involving time, here we optimized the ConvRNNs to
perform the “static” task of object classification on ImageNet. It is possible that the primate visual
system is optimized for such a task, because even static images produce reliably dynamic neural
response trajectories at temporal resolutions of tens of milliseconds [Issa et al., 2018]. The object
content of some images becomes decodable from the neuronal population significantly later than the
content of other images, even though animals recognize both object sets equally well. Interestingly,
late-decoding images are not well classified by feedforward CNNs, raising the possibility that they
are encoded in animals through recurrent computations [Kar et al., 2017]. If this were the case, then
recurrent networks trained to perform a difficult, but static object recognition task might explain
neural dynamics in the primate visual system, just as feedforward models explain time-averaged
responses [Yamins et al., 2014, Khaligh-Razavi and Kriegeskorte, 2014]. We therefore asked whether
our task-optimized ConvRNN model could predict the dynamic firing rates of primate neurons
recorded during encoding of visual stimuli. These data included multi-electrode array recordings
from the ventral visual pathway of rhesus macaque monkeys described in [Majaj et al., 2015] (see
Supplemental Methods.)

We presented the fully trained median ConvRNN and its feedforward baseline with the same images
shown to monkeys and collected the time series of features from each model layer. To decide which
layer should be used to predict which neural responses, we fit linear models from each feedforward
layer’s features to the neural population and measured where explained variance on held-out images
peaked (see Supplemental Methods.) Units recorded from distinct arrays – placed in the successive
V4, posterior IT, and central/anterior IT cortical areas of the macaque – were fit best by the successive
6th, 7th, and 8/9th layers of the feedforward model, respectively (Figure 3a,b). This result extends
and refines the mapping of successive CNN layers to defined anatomical areas within the ventral
visual pathway [Yamins et al., 2014]. Finally, we measured how well the ConvRNN features from
these layers predicted the dynamics of each unit. Critically, we used a single linear mapping across
all times so that the intrinsic dynamics of the recurrent network had to account for the dynamics in
the neural response, consistent with a fixed physical relationship between real neurons and model
units.

On held-out images, the ConvRNN feature dynamics fit the neural response trajectories as well as or
better than the feedforward baseline features for almost every 10 ms time bin (Figure 3c). Moreover,
because the feedforward model has the same square wave dynamics as its 100ms visual input, it
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Figure 5: Modeling pri-
mate ventral stream neu-
ral dynamics with Con-
vRNNs. (a) The ConvRNN
model used to fit neural dy-
namics has local recurrent
cells at layers 4 through
10 and the long-range feed-
backs denoted by the red ar-
rows. (b) Consistent with
the brain’s ventral hierarchy,
most units from V4 are best
fit by layer 6 features; pIT
by layer 7; and cIT/aIT by
layers 8/9. (c) Fitting model
features to neural dynamics
approaches the noise ceil-
ing of these responses. The
y-axis indicates the median
across units of the correla-
tion between predictions and
ground-truth responses on
held-out images.
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cannot predict neural responses after image offset plus a fixed delay, corresponding to the number of
layers (Figure 3c dashed black lines.) In contrast the activations of ConvRNN units have persistent
dynamics, yielding strong predictions of the entire neural response trajectories. This improvement is
especially clear when comparing the predicted temporal responses of the feedforward and ConvRNN
models on single images (Figure S1a): ConvRNN predictions have dynamic trajectories that resemble
smoothed versions of the ground truth responses, whereas feedforward predictions necessarily have
the same time course for every image. Crucially, this results from the nonlinear dynamics learned
on ImageNet, as both models are fit to neural data with the same form of temporally-shared linear
model the same number of parameters. Across all recorded units and held-out images, the ConvRNN
shows a substantial advantage over the feedforward model in its prediction of single-image temporal
responses (Figure S1b). Thus, a recurrent object recognition model trained on ImageNet may account
for neural dynamics in the primate ventral pathway.

4 Conclusion and Future Directions

Here, we show that careful introduction of recurrence into CNNs can improve performance on a
challenging object recognition task, as even exhaustive hyperparameter optimization of traditional
recurrent cells demonstrated inferior ImageNet performance compared to hand-designed custom
cells. In light of suggestions that cortical microcircuits might be well-modeled by LSTMs [Costa
et al., 2017], our findings raise the possibility that different local recurrent structures may be adapted
for different behaviors within the brain. In fact, we found strong selection for the combination
gating, bypassing, and depth-separability in a local recurrent cell. With the proper local recurrence in
place, specific patterns of long-range feedback connections also performance. Furthermore, although
all nonlinear dynamics in these models were optimized only to perform a task, these dynamics
provide strong estimates of neural dynamics in the primate ventral stream. Thus we extend a core
principle from the feedforward to the recurrent regime: given an appropriate architecture class,
task-optimized recurrent neural networks provide the quantitatively best normative models of visual
encoding dynamics in the primate brain.

These results differ from related work in which CNNs were supplemented with recurrence at sev-
eral layers or reconfigured into recurrent structures. In those cases, recurrence served either to (a)
perform a dynamic task with time-varying inputs and outputs (e.g. future prediction [Lotter et al.,
2017]), (b) solve object recognition with substantially fewer parameters than in a deeper feedforward
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structure [Leroux et al., 2018], (c) strictly improved object recognition performance, but on tasks
substantially less challenging than ImageNet categorization [Spoerer et al., 2017, Liao and Poggio,
2016, Zamir et al., 2017], or (d) achieved only very small performance increases with recurrence [Li
et al., 2018]. Despite their merits, none of these approaches has (to our knowledge) produced quan-
titatively strong models of neural dynamics, nor substantially improved performance on ImageNet
above the feedforward backbones they extend (although see Cichy et al. [2016], which predicts later
timepoints of neural dynamics with deep layers of a feedforward CNN). However, it will be important
to test whether such models can predict aspects of neural dynamics even without achieving higher
ImageNet accuracy, for instance by looking at responses specific to occluded objects.

We believe that applying the approach we took here in concert with CNNs that use more sophisticated
feedforward motifs, such as those in NASNet [Zoph et al., 2017], could lead to improvements to
these state-of-the-art baselines. While training such models on full-sized ImageNet images would
require resources beyond those that we currently possess, such an effort could be fruitful. Further
experiments will explore whether different tasks, such as those that do not rely on difficult-to-obtain
category labels, can substitute for supervised object recognition in matching ConvRNNs to neural
responses. We will also test whether our models can withstand other forms of temporal noise or
nonrandom movement in an input movie, or even use them as a form of “data augmentation” to build
spatio-temporally invariant representations of objects.
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6 Supplemental Methods

6.1 CNN architectures

For all of our CNN architectures, we use Elu nonlinearities. The 6-layer feedforward CNN,
referenced in Figure 2b as “FF”, had the following architecture:

Layer Kernel Size Channels Stride Max Pooling
1 7× 7 64 2 2× 2
2 3× 3 128 1 2× 2
3 3× 3 256 1 2× 2
4 3× 3 256 1 2× 2
5 3× 3 512 1 2× 2
6 2× 2 1000 1 No

The variant of the above 6-layer feedforward CNN, referenced in Figure 2b as “FF wider” is given
below:

Layer Kernel Size Channels Stride Max Pooling
1 7× 7 128 2 2× 2
2 3× 3 512 1 2× 2
3 3× 3 512 1 2× 2
4 3× 3 512 1 2× 2
5 3× 3 1024 1 2× 2
6 2× 2 1000 1 None

The “FF deeper” model referenced in Figure 2b is given below:
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Layer Kernel Size Depth Stride Max Pooling
1 7× 7 64 2 2× 2
2 3× 3 64 1 None
3 3× 3 64 1 None
4 3× 3 128 1 2× 2
5 3× 3 128 1 None
6 3× 3 256 1 2× 2
7 3× 3 256 1 2× 2
8 3× 3 512 1 None
9 3× 3 512 1 None
10 3× 3 512 1 2× 2
11 None (Avg. Pool FC) 1000 None None

The 18 layer CNN modeled after ResNet-18 (using MaxPooling rather than stride-2 convolutions to
perform downsampling) is given below:

Block Kernel Size Depth Stride Max Pooling Repeat
1 7× 7 64 2 2× 2 ×1
2 3× 3 64 1 None ×2
3 3× 3 64 1 None ×2
4 3× 3 128 1 2× 2 ×2
5 3× 3 128 1 None ×2
6 3× 3 256 1 2× 2 ×2
7 3× 3 256 1 2× 2 ×2
8 3× 3 512 1 None ×2
9 3× 3 512 1 None ×2
10 3× 3 512 1 2× 2 ×2
11 None (Avg. Pool FC) 1000 None None ×1

6.2 Reciprocal Gated Cell Equation

We will provide the update equations for the “Reciprocal Gated Cell”, diagrammed in Figure 2a
(bottom right). Let ◦ denote Hadamard (elementwise) product, let ∗ denote convolution, and let x`t
denote the input to the cell at layer `. Then the update equations are as follows:

The update equation for the output of the cell, h`t , is given by a gating of both the input and memory
c`t .

a`t+1 = (1− σ(W `
ch ∗ c`t)) ◦ x`t + (1− σ(W `

hh ∗ h`t)) ◦ h`t
h`t = f

(
a`t
)
.

(1)

The update equation for the memory c`t is given by a gating of the input and the output of the cell h`t .

c̃`t+1 = (1− σ(W `
hc ∗ h`t)) ◦ x`t + (1− σ(W `

cc ∗ c`t)) ◦ c`t
c`t = f(c̃`t).

(2)

6.3 RNN Cell Search Parametrization

Inspired by the Reciprocal Gated Cell equations above, there are a variety of possibilities for how
h`t−1, x

`
t, c

`
t , and h`t can be connected to one another. Figure 3a schematizes these possibilities.

Mathematically, Figure 3a can be formalized in terms of the following update equations.
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First, we define our input sets and building block functions:

minin = {h`−1t−1, x
`
t, c

`
t−1, h

`
t−1}

minina = minin ∪ {c`t}
mininb = minin ∪ {h`t}
Sa ⊆ minina
Sb ⊆ mininb
Affine(x) ∈ {+, 1× 1 conv,K ×K conv,K ×K depth-separable conv}
K ∈ {3, . . . , 7}

With those in hand, we have the following update equations:

τa = vτ1 + vτ2σ(Affine(Sa))
τb = vτ1 + vτ2σ(Affine(Sb))

gatea = vg1 + vg2σ(Affine(Sa))

gateb = vg1 + vg2σ(Affine(Sb))

a`t = {gatea} · in`t + {τa} · h`t−1
h`t = f(a`t)

b`t = {gateb} · in`t + {τb} · c`t−1
c`t = f(b`t)

f ∈ {elu, tanh, σ}.

For clarity, the following matrix summarizes the connectivity possibilities (with ? denoting the
possibility of a connection):



h`−1
t−1 x`

t c`t−1 c`t h`
t−1 h`

t

h`−1
t−1 0 1 0 ? 0 ?
x`
t 0 0 0 ? 0 ?

c`t−1 0 0 0 ? 0 ?
c`t 0 0 0 0 0 ?
h`
t−1 0 0 0 ? 0 ?
h`
t 0 0 0 ? 0 0


6.4 Training ConvRNN Models

ConvRNN models and ResNet models in this work were trained by stochastic gradient descent using
the same learning rate schedule and data augmentation methods as the original ResNet models [He
et al., 2016] with the following modifications: we used a batch size of 128, an initial learning rate of
0.01, and Nesterov momentum of 0.9. Standard ImageNet cross-entropy loss was computed from the
last time step of a ConvRNN. Gradients with absolute value greater than 0.7 were clipped.

6.5 Hyperparameter Optimization Methods

Models were trained synchronously 100 models at a time using the HyperOpt package [Bergstra
et al., 2015], for 5 epochs each. Each model was trained on its own Tensor Processing Unit (TPUv2),
and around 6000 models were sampled in total over the course of the search.

We employed a form of Bayesian optimization, a Tree-structured Parzen Estimator (TPE), to search the
space of continuous and categorical hyperparameters [Bergstra et al., 2011]. This algorithm constructs
a generative model of P [score | configuration] by updating a prior from a maintained history H
of hyperparameter configuration-loss pairs. The fitness function that is optimized over models is the
expected improvement, where a given configuration c is meant to optimize EI(c) =

∫
x<t

P [x | c,H].
This choice of Bayesian optimization algorithm models P [c | x] via a Gaussian mixture, and restricts
us to tree-structured configuration spaces.
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Figure S1: Comparison of feedforward models and ConvRNNs to single images. (a) Examples
of a single pIT unit’s response to three different images from the held-out validation set. Dashed lines
are the ground truth response, solid lines are the model prediction. The feedforward model is forced
to have the dynamics of a square wave. (b) Correlations of ground truth with predicted responses
across time bins (50 to 250 ms.) The temporal correlation is computed for each image and for each
unit. Plotted: the median across units from each array of the median temporal correlation across
single held-out validation images.

6.6 Fitting Model Features to Neural Data

We fit trained model features to multi-unit array responses from [Majaj et al., 2015]. Briefly, we
fit to 256 recorded sites from two monkeys. These came from three multi-unit arrays per monkey:
one implanted in V4, one in posterior IT, and one in central and anterior IT. Each image was
presented approximately 50 times, using rapid visual stimulus presentation (RSVP). Each stimulus
was presented for 100 ms, followed by a mean gray background interleaved between images. Each
trial lasted 250 ms. The image set consisted of 5120 images based on 64 object categories. Each
image consisted of a 2D projection of a 3D model added to a random background. The pose, size, and
x- and y-position of the object was varied across the image set, whereby 2 levels of variation were
used (corresponding to medium and high variation from [Majaj et al., 2015].) Multi-unit responses to
these images were binned in 10ms windows, averaged across trials of the same image, and normalized
to the average response to a blank image. This produced a set of (5120 images x 256 units x 25 time
bins) responses, which were the targets for our model features to predict. To estimate a noise ceiling
for each mean response at each time bin, we computed the Spearman split-half reliability across
trials.

The 5120 images were split 75-25 within each object category into a training set and a held-out
testing set. All images were presented to the models for 10 time steps (corresponding to 100 ms),
followed by a mean gray stimulus for the remaining 15 time steps, to match the image presentation to
the monkeys.

ConvRNN or feedforward model features from each image (i.e. the activations of units in a given
model layer) were linearly fit to the neural responses by stochastic gradient descent with a standard
L2 loss. Each of the 256 units was fit independently. We stipulated that units from each multi-unit
array must be fit by features from a single model layer. To determine which one, we fit the features
from the feedforward model to each time bin of a given unit’s response, averaged across time bins,
and counted how many units had minimal loss for a given model layer. This yielded a mapping
from the V4 array to model layer 6, pIT to layer 7, and cIT/aIT to layer 8. Finally, ConvRNN and
feedforward model features were fit to the entire set of 25 time bins for each unit using a shared
linear model: that is, a single set of regression coefficients was used for all time bins. The loss for
this fitting was the average L2 loss across training images and 25 time bins for each unit.
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