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Supplementary Figure 1 

Conceptual dynamical system: 1-D pendulum 

a. A 1-dimensional pendulum released from position p1 or p2 has different positions and velocities over time. b. The state of the 
pendulum is captured by a 2-D vector that specifies its position and velocity, shown here evolving as a function of time (blue and black 
traces correspond to different initial conditions p1 and p2). c. The evolution of the state follows dynamical rules, i.e. the pendulum’s 
equations of motion. In this autonomous dynamical system (i.e., there are no perturbations), knowing the pendulum’s initial state (filled 
circles) and dynamical rules that govern the state evolution (gray vector field) gives full knowledge of the pendulum’s state as a function 
of time (black and blue traces). d-f. Perturbations to the pendulum, an example of input-driven dynamics. d. The pendulum’s motion 
might be perturbed by an external force, e.g. it is bumped rightward. e,f. With a perturbation, the evolution of the system’s state during 
the perturbation no longer follows its autonomous dynamical rules. This is shown as dashed red lines in the position vs. time and 
velocity vs. time plots, as well as the state-space diagram. A perturbation can be modeled by transforming the equations to allow an 
input term u(t) that models the perturbation. g. LFADS modeling of the perturbed pendulum. Traces of the pendulum motion are used to 
train LFADS. During training, the LFADS generator RNN learns to approximate the pendulum dynamics, ṡ = f(s, u), using its own 
internal state and dynamics. LFADS also learns a per-trial initial generator state s0, which allows it to model trials that start with 
different initial pendulum states, such as p1 or p2. Further, LFADS learns a set of time-varying inputs per trial, which allows it to model 



perturbations to the pendulum system, u(t). These three pieces of information are enough to reconstruct each trial.  



 

Supplementary Figure 2 

LFADS applied to Lorenz attractor 

We compared the performance of LFADS to three existing methods that estimate latent state from neural data: Variational Latent 
Gaussian Process (vLGP), Gaussian Process Factor Analysis (GPFA), and Poisson Feed-forward neural network Linear Dynamical 
System (PfLDS). To test LFADS and to compare its performance with other approaches, we generated synthetic stochastic spike trains 
from deterministic nonlinear systems. The first is the standard Lorenz system (see Online Methods for equations and details). a. An 
example trial illustrating the evolution of the Lorenz system in its 3-dimensional state space, and b. its dynamic variables as a function 
of time. c. Firing rates for the 30 simulated neurons are generated by a linear readout of the latent variables followed by an exponential 
nonlinearity, with neurons sorted according to their weighting for the first Lorenz dimension. d. Spike times for the neurons are 
generated from the rates of the simulated neurons. e-h Sample performance for each method applied to spike trains based on Lorenz 
attractor. Each panel shows actual (black) and inferred (red) values of the three latent variables for a single example trial for the 4 
methods: e. vLGP, f. GPFA, g. PfLDS, h. LFADS. For LFADS, posterior means were averaged over 128 samples of g0 conditioned on 
the particular data sequence being decoded. We quantified performance using R2, i.e., the fraction of the variance of the actual latent 
variables captured by the estimated latent values. For the latent dimensions {y1,y2,y3}, the resulting R2 values were 
{0.761,0.688,0.218}, {0.713,0.725,0.325}, {0.784,0.732,0.368}, and {0.850,0.921,0.872} for vLGP, GPFA, PfLDS, and LFADS, 
respectively. 
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Supplementary Figure 3 

LFADS applied to autonomous chaotic data RNN 

a-c. We generated synthetic data with high-dimensional, chaotic dynamics using an RNN. a. Firing rates for one example trial, 
simulated by the chaotic "data RNN" (colors show rates fluctuating between -1 and 1). b. We then created synthetic spike trains, 
emitted from a Poisson process whose underlying rates were the normalized continuous rates of the data RNN. c. We used principal 
components analysis to assess the dimensionality of the data. As expected, the state of the data RNN had lower dimension than its 
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number of neurons, and 20 principal components were sufficient to capture > 95% of the variance of the system. So we restricted the 
latent space to 20 dimensions for each of the models tested and, in the case of LFADS, set the factors dimensionality to 20 as well (F = 
20). d-g Sample performance for each method on the RNN task. We tested the performance of the methods at extracting the 
underlying firing rates from the spike trains of the RNN dataset. Shown are single trial examples for d GPFA, e vLGP, f PfLDS, and g 
LFADS. As can be seen by eye, the LFADS results are closer to the actual underlying rates than for the other models (black, firing rates 
of chaotic data RNN, red, inferred rates). h-j. Summary R2 values between actual and inferred rates. Comparison using held-out data of 
the R2 values for h GPFA vs. LFADS, i vLGP vs. LFADS, and j PfLDS vs. LFADS for all units (blue ’x’). In all comparisons, LFADS 
yields a better fit to the data, for every single unit. 



 

Supplementary Figure 4 

Effect of varying hyperparameters on kinematic decoding performance in the maze task 

For GPFA, we tested the effect of varying binsize and latent dimensionality on the ability to decode arm velocities. For LFADS, we fixed 
the binsize at 5 ms, and tested the effect of changing the latent dimensionality (number of factors).  
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Supplementary Figure 5 

Single-trial factor trajectories from the multi-session stitched LFADS model for a representative session 

LFADS factors are projected into a space consisting of the condition-independent signal (CIS) and the first rotational plane identified 
using jPCA; this is the same projection used in Fig. 4d in the main text. Black dots depict the time of go cue presentation, and each 
trajectory proceeds for 510 ms. Colors indicate reach direction as in Fig. 4. Thin traces are trajectories from individual trials; thick traces 
of the same color are the condition-averaged trajectory for each reach direction.  
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Supplementary Figure 6 

Dynamically stitched multi-session LFADS model outperforms single-session LFADS models in predicting reaction times 

As defined in (Kaufman et al., eNeuro 2016), the condition-independent signal (CIS) is a high variance component of motor cortical 
population activity obtained via demixed principal components analysis (dPCA). Kaufman et al. 2016 also demonstrated that threshold 
crossing time of the CIS on single trials is an effective predictor of reach reaction time (RT). Here we identify the CIS as a linear 
projection of LFADS factor trajectories. We apply dPCA to the factor outputs of each single-session and the multi-session LFADS 
models to identify the largest condition-independent component, and then threshold the CIS to predict RT on single trials. a. Plot of 
condition-independent signals (CIS) for an example dataset. Each trace represents the CIS timecourse on a single trial, and is colored 
by that trial’s actual RT. b. Plot of correlations between CIS-predicted RT and actual RT on trials from each dataset for stitched multi-
session LFADS vs single-session LFADS. Each point represents an individual recording session. For the stitched model, a single CIS 
projection was computed and applied for all sessions, whereas individual CIS projections were obtained for each single-session model.  



 

Supplementary Figure 7 

Inferring inputs from a chaotic data RNN with delta pulse inputs 

We tested the ability of LFADS to infer the input to a dynamical system, specifically chaotic data RNNs, as used in Supp. Fig. 3. During 
each trial, we perturbed the network by delivering a delta pulse at a random time tpulse between 0.25s and 0.75s. The full trial length was 
1s. This pulse affected the underlying rates produced by the data RNN, which subsequently affected the generated spike trains that 
were used as input to LFADS. To test the ability of LFADS to infer the timing of the input pulses, we allowed the LFADS model to infer a 
time-varying input (1-dimensional). We explored two levels of dynamical complexity in the data RNNs (see Online Methods), defined by 
two values, 1.5 and 2.5, of a hyper-parameter to the data RNN, γ. a-c γ = 1.5. This value of γ value produces “gentler" chaotic activity in 
the data RNN than the higher value. a. Example trial illustrating results from the γ = 1.5 chaotic data RNN with an external input (shown 
in black at the top of each column). Firing rates for the 50 simulated neurons. b. Poisson-generated spike times for the simulated 
neurons. c. Example trial showing (top) the actual (black) and inferred (cyan) input, and (bottom) actual firing rates of a subset of 
neurons in black and the corresponding inferred firing rates in red (bottom). d-f. Same as a-c, but for γ = 2.5, which produces 
significantly more chaotic dynamics than γ = 1.5. f. For this more difficult case, LFADS inferred input at the correct time (blue arrow), 
but also used its 1-D inferred input to shape the dynamics at times there was no actual input (green arrow).  
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Supplementary Figure 8 

Summary of results of chaotic data RNNs receiving input pulses  

We extracted averaged inferred inputs, ut, from the LFADS models used in Supp. Fig. 7. a,b. To see how timing of the inferred input 
was related to the timing of the actual input pulse, we determined the time at which ut reached its maximum value (vertical axis), and 
plotted this against the actual time of the delta pulse (horizontal axis) for all trials. a. Results using γ = 1.5, b. and γ = 2.5. As shown, for 
the majority of trials, despite the complex internal dynamics, LFADS was able to infer the correct timing of a strong input. However, 
LFADS did a better job of inferring the inputs in the case of simpler dynamics for two reasons: In the case of γ = 2.5, 1) the complexity 
of the dynamics reduces the effective magnitude of the perturbation caused by the input and 2) LFADS used the inferred input more 
actively to account for non-input-driven dynamics. We include this example of a highly chaotic data RNN to highlight the subtlety of 
interpreting an inferred input. c-d One possibility in using LFADS with inferred inputs (i.e. dimensionality of ut ≥ 1) is that the data to be 
modeled is actually generated by an autonomous system, yet one, not knowing this fact, allows for an inferred input in LFADS. To study 
this case we utilized the four chaotic data RNNs described above, i.e. γ = 1.5, and γ = 2.5, with and without delta pulse inputs. We 
trained an LFADS model for each of the four cases, with an inferred input of dimensionality 1, despite the fact that two of the four data 
RNNs generated their data autonomously. After training we examined the strength of the average inferred input, ut, for each LFADS 
model (where strength is taken as the root-mean-square of the inferred input, averaged over an appropriate time window, 
sqrt(⟨u2t⟩t1:t2)). The results are show in panel c for γ = 1.5 and panel d for γ = 2.5. The solid lines show the strength ut at each time point 
when the data RNN received no input pulses, averaged across all examples. The ’◦’ and ’x’ show the strength of ut at time points when 
the data RNN received delta pulses, averaged in a time window around t, and averaged over all examples. Intuitively, a ’◦’ is the 
strength of ut around a delta pulse at time t, and an ’x’ is the strength of ut if there was no delta pulse around time t.  
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Supplementary Figure 9 

Inferring input from a data RNN trained to integrate white noise to a bound 

LFADS is able to model simulated neurons that are integrating a noisy input, and also infer the input itself (the noise signal). a. 
Overview of the integration-to-bound task. On each trial, the data RNN receives noise drawn from a Gaussian distribution with mean 0, 
variance 0.0625. We trained an RNN to integrate this stochastic, 1-dimensional input to either a high (+1) or low (−1) bound. After the 
data RNN learned the task, we generated spiking data from 50 neurons using similar methodology as Supp. Fig. 3 and fit an LFADS 
model to this data. b-d We fit an LFADS model to the data using 3200 1-second training examples, and evaluated its performance on 
800 held-out trials. LFADS was able to accurately infer the ground truth firing rates (LFADS in red, ground truth in black). LFADS also 
inferred the associated white-noise input to the data RNN (LFADS cyan, ground truth in black, posterior means averaged over 1024 
samples). These panels show the trials with the worst, median, and best measured R2 values between true and inferred inputs. b. Trial 
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with worst R2 = 0.11, c. median R2 = 0.38, d. and the best R2 = 0.64. e. Histogram showing distribution of R2 values between true and 
inferred inputs for the 800 held-out trials.  



 

Supplementary Figure 10 

Inferred inputs from individual trials in the Cursor Jump task  

This figure parallels Fig. 5d from the main text, but in this case, we plot the inferred inputs for individual trials. To increase visibility, only 
10 trials for each condition (reach direction and perturbation type) are shown. Individual traces were smoothed with an acausal 
Gaussian filter (60 ms s.d.). Despite the high variance across individual trials, several of the trends in the inferred inputs described in 
Fig. 5 in the main text are visible at the single-trial level. The inputs show information about the target of the upcoming reach on a 
single-trial level, though individual traces are noisy. Specifically, for example, at the time of target onset (squares), the inferred input 
dimension 1 diverges for up vs. down reaches, but not for different perturbation types (as the information about perturbation type is not 
yet known at that phase of the task). Further, the inputs show information about the perturbation timing and identity on a single-trial 
level, though again, individual traces are noisy. Specifically, around the time of the perturbation (arrow), the traces diverge for left-
perturbed vs. right-perturbed vs. unperturbed trials (e.g., seen in dimension 2). Though these individual traces are noisy, Fig. 5e in the 
main text shows that these inputs can largely be separated on a single-trial basis using a nonlinear dimensionality reduction algorithm, 
t-SNE. 



 

Supplementary Figure 11 

The LFADS generator 

The generative LFADS model is a recurrent network with a feed-forward read-out. The generator takes a sampled initial condition, 𝐠$ 
and a sampled inferred input, 𝐮&, at each time step, and iterates forward. At each time step the temporal factors, 𝐟&, and the rates, 𝐫& are 
generated in a feed-forward manner from 𝐠&. Spikes are generated from a Poisson process, 𝐱& ∼ 	Poisson(𝐱&|𝐫&). The initial condition 
and input at time step 1 are sampled from diagonal Gaussian distributions with zero mean and fixed chosen variance. Otherwise, the 
inputs are sampled from a Gaussian auto-regressive prior. 



 

Supplementary Figure 12 

The full LFADS model for inference 

The generator / decoder portion highlighted with a gray background and is colored red, the encoder portion is colored blue and the 
controller, purple. To infer the latent dynamics from the recorded neural spike trains 𝐱5:7 and conditioning data 𝐚5:7, initial conditions for 
the controller and generator networks are encoded from inputs. In the case of the generator, the initial condition 𝐠$ is drawn from an 
approximate posterior 𝑄:;(𝐠$|𝐱5:7, 𝐚5:7) that receives an encoding of the input, 𝐄:>? (in this figure, for compactness, we use 𝐱 and 𝐚 to 
denote 𝐱5:7 and 𝐚5:7). The low-dimensional factors at 𝑡 = 0, 𝐟$, are computed from 𝐠$. The controller then propagates one step forward 
in time, receiving the sample factors 𝐟$ as well as bidirectionally encoded inputs 𝐄5CD? computed from 𝐱5:7, 𝐚5:7. The controller produces, 
through an approximate posterior 𝑄E(𝐮5|𝐠$, 𝐱5:7, 𝐚5:7), a sampled inferred input 𝐮5 that is fed into the generator network. The generator 
network then produces {𝐠5, 𝐟5, 𝐫5}, with 𝐟5 the factors, and 𝐫5 the Poisson rates at 𝑡 = 1. The process continues iteratively so, at time 
step 𝑡, the generator network receives 𝐠&H5 and 𝐮& sampled from 𝑄E(𝐮&|𝐮5:&H5, 𝐠$, 𝐱5:7, 𝐚5:7). The job of the controller is to produce a 
nonzero inferred input only when the generator network is incapable of accounting for the data autonomously. Although the controller is 
technically part of the encoder, it is run in a forward manner along with the decoder. 

	



Model Figure N F |𝐮𝒕| 𝐠𝟎 E 
dim 

𝐮𝒕 E 
dim 

C 
dim 

G 
𝑳𝟐 

C 
𝑳𝟐 

KP BS 

Monkey J Maze Main 
2,3 

100 40 0 100 - - 10 - 0.98 5 

Participant T5 
Center-out 

Main 3 64 20 3 64 - - 250 - 0.95 5 

Monkey P 
Multi-session 

Main 4 100 16 0 100 - - 500 - 0.98 10 

Monkey P 
Single-session 

Main 4 100 16 0 100 - - 500 - 0.98 10 

Monkey J 
CursorJump 

Main 5 128 50 4 150 100 128 25 25 0.98 10 

Monkey J 
Center-out 

Main 6 128 50 4 150 100 128 25 25 0.98 2 

Participant T7 
Center-out 

Main 6 64 20 3 64 64 128 250 250 0.95 5 

Lorenz attractor Supp. 2 64 3 0 64 - - 250 - 0.95 a.u. 
Chaotic RNN Supp. 3 200 20 0 200 - - 2000 - 0.95 a.u. 
Input pulses Supp. 

6,7 
200 20 1 200 128 128 2000 0 0.95 a.u. 

RNN Integrator Supp. 8 200 20 1 128 128 128 2000 0 0.95 a.u. 
 
Supplementary Table 1. Important hyper-parameters of LFADS models. Listed here are the 
most important LFADS parameters, relating primarily to model capacity. ’N’ - number of units 
in the generator, ’F’ - number of factors, |𝐮𝐭| - number of inferred inputs, ’E’ - encoder, ’C’ - 
controller, ’G’ - generator, ’KP’ - keep probability in dropout layers, ’BS’ - bin size (ms).  



Model Figure Electrode type Signal post-processing 
Monkey J Maze Main 1, 2, 3 Utah array threshold crossings, spike 

sorted 
Participant T5 Center-out Main 3 Utah array threshold crossing 
Monkey P Single-session Main 4 v-probe threshold crossing 
Monkey P Multi-session Main 4 v-probe threshold crossing 
Monkey J CursorJump Main 5 Utah array threshold crossing 
Monkey J Center-out Main 6 Utah array threshold crossing 
Participant T7 Center-out Main 6 Utah array threshold crossing 

 
Supplementary Table 2. Signal collection technology and spike detection methods. 
  



Supplementary Note 1: Synthetic datasets 
Summary of synthetic datasets 

We chose a variety of synthetic examples in an effort to show LFADS’s ability to infer 
informative representations for dynamical systems of varying complexity. We ordered the 
synthetic examples roughly by complexity to build intuition. The examples are, in order, 

1. The pendulum example (Supp. Fig. 1) - a cartoon (no actual data), simply intended to 
impart intuition using a well-known and tangible physical system. 

2. The Lorenz model (Supp. Fig. 2, Supp. Table 1) - this simple model is now becoming 
standard in the field (e.g., 1,2), as it is a simple and well-known example of a nonlinear, 
chaotic dynamical system, and easy to understand and visualize due to its 3D state space. 

3. A synthetic RNN example with random connections and without input (Supp. Fig. 3) - this 
creates a much more complex high-dimensional dynamical system, intended to differentiate 
our method from common methods in the field that have difficulty modeling high-
dimensional, highly nonlinear dynamics. This RNN does not have the same architecture as 
that used in LFADS. 

4. A synthetic RNN example with simple pulse inputs (Supp. Figs. 7,8) - this provides a clear 
demonstration of the ability of LFADS to decompose an observed time series into both 
dynamics and inputs. This RNN does not have the same architecture as that used in LFADS. 

5. A synthetic RNN trained to perform an integration-to-bound task, given a noisy 1-D input 
(Supp. Fig. 9). Integration-to-bound is a common model of decision-making in systems 
neuroscience. This example shows the utility of LFADS not only in modeling a network 
that is trained to perform a task, but also shows that LFADS can infer inputs in networks 
that are performing meaningful computations. This RNN does not have the same 
architecture as that used in LFADS. 

Lorenz system 

The Lorenz system is a set of nonlinear equations for three dynamic variables. Its limited 
dimensionality allows its entire state space to be visualized. The evolution of the system’s state is 
governed as follows 

𝑦* = 𝜎 𝑦- − 𝑦* (1)
𝑦- = 𝑦*(𝜌 − 𝑦3) − 𝑦- (2)
𝑦3 = 𝑦*𝑦- − 𝛽𝑦3. (3)

 

We used the standard parameter values known for inducing chaos, 𝜎 = 10, 𝜌 = 28, and 𝛽 =
8/3, and used Euler integration with 𝛥𝑡 = 0.006. As in 1, we simulated a population of neurons 
with firing rates given by linear read-outs of the Lorenz variables using random weights, 
followed by an exponential nonlinearity. Spikes from these firing rates were then generated by a 
Poisson process. 

Our synthetic dataset consisted of 65 conditions, with 20 trials per condition. Each condition was 
obtained by starting the Lorenz system with a random initial state vector and running it for 1s. 



Twenty different spike trains were then generated from the firing rates for each condition. 
Models were trained using 80% of the data (16 trials/condition) and evaluated using 20% of the 
data (4 trials/condition). While this simulation is structurally quite similar to the Lorenz system 
used in 1, we purposefully chose parameters that made the dataset more challenging. Specifically, 
relative to 1, we limited the number of observations to 30 simulated neurons instead of 50, 
decreased the baseline firing rate from 15 spikes/sec to 5 spikes/sec, and sped up the dynamics 
by a factor of 4. 
Chaotic RNNs as data generators 

We tested the performance of each method at inferring the dynamics of a more complex 
nonlinear dynamical system, a fully recurrent nonlinear neural network with strong coupling 
between the units. We generated a synthetic dataset from an 𝑁-dimensional continuous time 
nonlinear, so-called, “vanilla" RNN, 

𝜏	𝐲(𝑡) = −𝐲(𝑡) + 𝛾 𝐖Ftanh(𝐲(𝑡)) + 𝐁 𝐪(𝑡).	(40) 

This makes a compelling synthetic case study for our method because many recent studies of 
neuroscientific data have used vanilla RNNs as their modeling tool (e.g. 3–7). It should be 
stressed that the vanilla RNN used as the data RNN here does not have the same functional form 
as the network generator used in the LFADS framework, which is a GRU (see section 1.7), 
although both have continuous variables and are not spiking models. For experiments in Supp. 
Fig. 3, we set 𝐁 = 𝐪 = 0, but we included an input for experiments in Supp. Fig. 6. 

The elements of the matrix 𝐖F were drawn independently from a normal distribution with zero 
mean and variance 1/𝑁 . We set 𝛾 to either 1.5 or 2.5, both of which produce chaotic dynamics 
at a relatively slow timescale compared to 𝜏 (see 3 for more details). The smaller 𝛾 value 
produces “gentler" chaotic activity in the data RNN than the larger value. Specifically, we set 
𝑁 = 50, 𝜏 = 0.025 s and used Euler integration with 𝛥𝑡 = 0.01 s. Spikes were generated by a 
Poisson process with firing rates obtained by scaling each element of tanh(𝐲(𝑡)) to take values 
in [0,1], and then used as the rate in a Poisson process to give rates lying between 0 and 30 
spikes/s. 

Our dataset consisted of 400 conditions obtained by starting the data RNN at different initial 
states with elements drawn from a normal distribution with zero mean and unit variance. Firing 
rates were then generated by running the data RNN for 1 s, and 10 spiking trials were produced 
for each condition, yielding a total of 4,000 spiking trials. Models were trained using 80% of the 
data (8 trials/condition) and evaluated using 20% of the data (2 trials/condition). 
Inferring pulse inputs to a chaotic RNN 

We tested the ability of LFADS to infer the input to a chaotic RNN (Supp. Figs. 6,7). In general, 
the problem of disambiguating dynamics from inputs is ill-posed, so we encouraged the 
dynamics to be as simple as possible by including an 𝐿- regularizer in the LFADS network 
generator (see Supplementary Table 1). We note that weight regularization is a standard 
technique that is nearly universally applied to neural network architectures. 

Focusing on Supp. Fig 6, we studied the synthetic example of inferring the timing of a delta 
pulse input to a randomly initialized RNN. To introduce an input into the data RNN, the 
elements of 𝐁 were drawn independently from a normal distribution with zero mean and unit 



variance. During each trial, we perturbed the network by delivering a delta pulse of magnitude 
50, 𝑞(𝑡) = 50𝛿(𝑡 − 𝑡UVWXY), at a random time 𝑡UVWXY between 0.25s and 0.75s (the full trial 
length was 1s). This pulse affects the underlying rates produced by the data RNN, which 
modulates the spike generation process. To test the ability of the LFADS model to infer the 
timing of these input pulses, we included in the LFADS model an inferred input with 
dimensionality of 1. We explored the same two values of 𝛾 as in the synthetic example to model 
chaotic RNN dynamics, 1.5 and 2.5. Other than adding the input pulses, the data for input-pulse 
perturbations were generated as in the first data RNN example described above. 
After training, which successfully inferred the firing rates, we extracted inferred inputs from the 
LFADS model (eqn. 15) by running the system 512 times for each trial, and averaging, defining 
𝐮Z = ⟨𝐮Z⟩𝐠],𝐮^:`. To see how the timing of the inferred input was related to the timing of the 
actual input pulse, we determined the time at which 𝐮Z reached its maximum value. 

Inferring white noise input in an RNN trained to integrate to bound 

We tested the ability of LFADS to infer the input to a vanilla RNN trained to integrate a noisy 
signal to a +1 or −1 bound. Weight matrices for this "data simulation RNN" were drawn 
independently from a Gaussian distribution with zero mean and variance 0.64/𝑁, and 𝐿- 
regularization was used during training. The noisy input signal was drawn from a Gaussian 
distribution with zero mean and variance 0.0625. 800 conditions were generated with white 
noise inputs, and 5 spiking trials were generated per condition. This resulted in 4,000 1s spiking 
trials. 3,200 trials were used for training and 800 trials were used for validation. 

After training LFADS on the integrate-to-bound data (simulated as above), inferred inputs (𝐮Z) 
for a given trial were extracted by taking 1024 samples from the (𝐮Z) posterior distribution 
produced by LFADS, and then averaging. These inferred inputs were then compared (using 𝑅-) 
with the real inputs to the integrate-to-bound model, which were saved down previously during 
training. 

  



Supplementary Note 2: LFADS-related work in machine learning literature 

Recurrent neural networks have been used extensively to model neuroscientific data (e.g. 3–7), 
but the networks in these studies were all trained in a deterministic setting. An important recent 
development in deep learning has been the advent of the variational auto-encoder 8,9, which 
combines a probabilistic framework with the power and ease of optimization of deep learning 
methods. VAEs have since been generalized to the recurrent setting, for example with variational 
recurrent networks10, deep Kalman filters11, and the RNN DRAW network12. 

There is also a line of research applying probabilistic sequential graphical models to neural data. 
Recent examples include PLDS13, switching LDS14, GCLDS15, and PfLDS16. These models 
employ a linear Gaussian dynamical system state model with a generalized linear model (GLM) 
for the emissions distribution, typically using a Poisson process. In the case of the switching 
LDS, the generator includes a discrete variable that allows the model to switch between linear 
dynamics. GCLDS employs a generalized count distribution for the emissions distribution. 
Finally, in the case of PfLDS, a nonlinear feed-forward function (neural network) is inserted 
between the LDS and the GLM. 
Gaussian process models have also been explored. GPFA17 uses Gaussian processes (GPs) to 
infer a time constant with which to smooth neural data and has seen widespread use in 
experimental laboratories. More recently, the authors of 1 have used a variational approach 
(vLGP) to learn a GP that then passes through a nonlinear feed-forward function to extract the 
single-trial dynamics underlying neural spiking data. 

Additional work applying variational auto-encoding ideas to recurrent networks can be found in 
18. The authors of 11 have defined a very general nonlinear variational sequential model, which 
they call the Deep Kalman Filter (DKF). The authors of 19 applied recurrent variational 
architectures to problems of control from raw images. Finally, 20  applied dynamical variational 
ideas to sequences of images. Due to the generality of the equations in many of these references, 
LFADS is likely one of many possible instantiations of a variational recurrent network applied to 
neural data (in the same sense that a convolutional network architecture applied to images is also 
a feed-forward network, for example). 

The LFADS model decomposes the latent code into an initial condition and a set of innovation-
like inferred inputs that are then combined via an RNN to generate dynamics that explain the 
observed data. Recasting our work in the language of Kalman filters, our nonlinear generator is 
analogous to the linear state estimator in a Kalman filter, and we can loosely think of the inferred 
inputs in LFADS as innovations in the Kalman filter language. However, an “LFADS 
innovation” is not strictly defined as an error between the measurement and the read-out of the 
state estimate. Rather, the LFADS innovation may depend on the observed data and the 
generation process in extremely complex ways. 
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