
Dickie et al.  Supplement 

1 

Personalized Intrinsic Network Topography Mapping and 
Functional Connectivity Deficits in Autism Spectrum Disorder 

Supplemental Information 
 

Technical Methods 
Preprocessing Pipeline 
Supplemental Table S1. Loadings from a principal component analysis of the temporal 
scan quality metrics derived from the quality assurance pipeline (QAP). 
The PINT Algorithm 
Supplemental Table S2. Locations of the PINT ROIs. 

ABIDE I Methods and Results 
Method 

Sample Preprocessing Pipeline and Quality Assurance 
Supplemental Table S3. Scanning parameters and participant demographics across 
sites. 
Results 

Performance of the PINT Algorithm in ABIDE I 
Whole Brain Network Correlation Maps 

Supplemental Figure S1. Whole brain correlations with template vertex seeds. 
Supplemental Figure S2. Whole brain correlations with personalized vertex seeds. 
Supplemental Figure S3. Probabilistic maps of personalized ROI locations by network. 
Supplemental Figure S4: No effect of in scanner head motion on PINT vertex 
displacement. 
Supplemental Figure S5.  Average correlation matrices (Z-transformed) from ABIDE I 
participants (n=889) calculated A) before PINT correlation (“template” ROIs) and B) 
after PINT correction (“personalized” ROIs). 
Supplemental Table S4. Mean (SD) network correlation (Z-transformed) from n=889 
ABIDE I participants for template (Before PINT) and personalized (After PINT) ROIs. 
Supplemental Figure S6. Within ROI heterogeneity in resting state network correlation 
decreases with the application of PINT. 
Supplemental Table S5. Association of ADOS total score with functional connectivity 
(n=264). 
Supplemental Figure S8. Edges showing where a significant (FDR corrected) negative 
correlation between intrinsic connectivity and ADOS total scores was observed. 

CoRR and ABIDE Longitudinal 
Methods 



Dickie et al.  Supplement 

2 

Datasets 
Supplemental Table S6. Demographic information from the CoRR participants 
employed in this analysis. 

Preprocessing Workflow 
Test-Retest Analysis of Resting State Connectivity 

Supplemental Figure S9. Between-subject and within-subject distance for personalized 
ROI locations by network. 
Supplemental Table S7. Paired t-test results for within-subject and between-subject 
distances of PINT personalized ROI locations across site and diagnosis. 
Supplemental Table S8. Comparison of within subject and cross subject correlation 
matrices, before and after PINT. 

Evaluation of PINT Parameters on Test-Retest Performance 
Methods 
Results 

Supplemental Figure S10: Evaluating the effects of PINT input parameters on test-
retest reliability of PINT results (n=158 test-retest participants). 

Table S9. Effects of ASD Diagnosis on vertex displacement and functional correlations 
after varying the PINT sampling radius settings. 

Supplemental Figure S11. Maximizing full correlation within the PINT algorithm 
increases the correlation (adjusted for scanning site and age) between functional 
connectivity and head-motion (mean framewise displacement), but maximizing 
partial correlation does not increase correlation between functional connectivity 
and head-motion. 

Supplemental References 

 

 
 

 
  



Dickie et al.  Supplement 

3 

Technical Methods 

Preprocessing Pipeline 

The T1w images were submitted to FreeSurfer's recon-all pipeline (1)(v.5.3.0, 

http://surfer.nmr.mgh.harvard.edu/). The FreeSurfer outputs (surfaces and cortical 

thickness values) were then converted to GIfTI and CIfTI format using scripts adapted from 

the Human Connectome Project's (HCP) Minimal Processing Pipeline (2). These adapted 

scripts are available at https://github.com/edickie/ciftify (see bin/ciftify_recon_all). 

Following conversion, as in the HCP Minimal Processing Pipeline, all surfaces were 

transformed to the MNI template using FSL FNIRT (3), and the left and right surfaces 

within each individual were then registered to each other using FreeSurfer and re-sampled 

to a 32k mesh. Therefore all subjects were analyzed in HCP's “MNINonLinear-

fsaverage_LR32 space”. Resting state functional images were preprocessed using a 

combination of tools from AFNI (4) (https://afni.nimh.nih.gov/afni/, last update 

2015.12.15) and FSL (3) (v.5.0.9; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), which were 

combined using an in-house pipeline tool (https://github.com/josephdviviano/epitome). 

Preprocessing steps were as follows: 1) the first three volumes were removed; 2) temporal 

spikes (defined as timepoint outliers larger than 2.5 standard deviations from a 5 term 

polynomial fit to each voxel's time series) were removed using AFNI's 3dDespike; 3) slice 

timing correction was completed using AFNI's 3DTshift; 4) the global mean of the image 

was set to 1000; 5) motion correction was completed using AFNI's 3dvolreg; 6) signal from 

outside the brain was removed from the EPI image using FSL's BET; 7) the linear trend was 

removed from each timeseries; 8) removal of artefacts was conducted using ICA-FIX (5). 

For the ICA data cleaning step, 18 FIX classifiers (one for each sample included in the 

analysis) were trained using labels from a random set of 25 participants from each site. To 

facilitate this process, ICA components from the training set were first labeled using the 

‘Standard’ training set available with ICA FIX. These labels were then readjusted with the 

aid of an in-house html quality control interface (https://github.com/edickie/icarus). 

Following data cleaning, fMRI images were non-linearly transformed to MNIspace, and then 

resampled to MNINonLinear-fsaverage_LR32 space. Finally, the fMRI data was smoothed 

along the cortical surface, and subcortical ROIs were smoothed within-parcel, both using a 

https://paperpile.com/c/I725z4/Sczc4
https://paperpile.com/c/I725z4/F4DPf
https://paperpile.com/c/I725z4/DStHS
https://paperpile.com/c/I725z4/vKMWS
https://paperpile.com/c/I725z4/DStHS
https://paperpile.com/c/I725z4/CHyi0
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8mm full-width half-max (FWHM) Gaussian kernel. 

Quality assurance metrics for the resting state scans were assessed using the Quality 

Assurance Pipeline (https://github.com/preprocessed-connectomes-project/quality-

assessment-protocol 20160715).  Participants were excluded for having a framewise 

displacement greater than 1mm for greater than 5 percent of the resting state scan and/or 

having less than 6 “signal” ICA components (labeled by ICA-FIX) in the resting state scan 

(see ABIDE I Methods and Results section, below, for numbers excluded). After excluding 

scans of low quality, quality assurance metrics from the remaining participants were 

transformed to normality and submitted to a principal component analysis. The top two 

principal components accounted for a total of 83% of the variance in temporal scan quality 

(variable loadings are given in Supplemental Table S1). The second component (PC2) is 

dominated by motion (mean framewise displacement). The first component showed 

stronger loadings from the other three metrics of scan quality. These two scan quality QC’s 

principle components were included as covariates in all subsequent analyses. 
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Supplemental Table S1. Loadings from a principal component analysis of the 
temporal scan quality metrics derived from the quality assurance pipeline (QAP).   

These two PC’s were included as covariates in all subsequent analyses.  
 

 PC 1  
(54.4 % of  
Variance) 

PC2  
(28.9 % of Variance) 

DVARSa -0.492 -0.478 

Mean Temporal Signal to Noise Ratio -0.618 -0.156 

Mean Framewise Displacement 0.214  -0.821 

Median Distance Indexb  -0.574 0.272 

a The average change in mean intensity between each pair of fMRI volumes in a series scaled to 
make comparisons across scanning protocols possible. Lower values are better (6) 
http://blogs.warwick.ac.uk/nichols/entry/standardizing_dvars. 
b Calculated using AFNI’s 3dTqual (4).  
  

https://paperpile.com/c/I725z4/EoGqR
https://paperpile.com/c/I725z4/vKMWS
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The PINT Algorithm 

PINT fits an individual participant's resting connectivity matrix to a “template” pattern of 

networks by moving the locations for sampling ROIs in a manner that optimizes the within-

network connectivity. The code is available at https://github.com/edickie/ciftify, see 

ciftify-PINT-vertices). We build upon the result, from brain stimulation site targeting, that 

correlation with a network average timeseries, constructed as an average from multiple 

dispersed regions of the same network, can more reliably locate a functional region of 

interest than correlation with one ROI alone (7). Therefore, we define our network average 

timeseries as that calculated from all ROIs of the same network, excluding the ROI being 

localized. We maximise partial correlation between the target ROI and the network average 

timeseries (controlling for the average network timeseries from the other five networks). 

We maximise partial correlation, rather than full correlation, because of reports that partial 

correlation measures are less susceptible to motion artefacts (8, 9).  

PINT works in an iterative fashion. It starts by calculating average mean timeseries 

from circular ROIs (of 6mm radius) around 80 central “template” vertices. Then, for each 

template vertex, search area is defined as those vertices within 6mm of the central 

template vertex and not within 12mm of any other ROI’s template vertex. PINT then 

calculates the partial correlation of all vertices within search area around the template 

vertex and average timeseries from the other ROIs of the same network (the partial 

correlation controls for the five average timeseries of the ROIs of the other networks). The 

center of the ROI is moved to the vertex within the 6mm radius search space with the 

maximal partial correlation to the remaining within-network ROIs. Once all 80 ROIs have 

been moved to the vertices of highest partial correlation, the algorithm iterates, updating 

the network timeseries and searching around the new vertex locations. The algorithm 

stops when all 80s ROIs are centered around the vertex is that of maximal partial 

correlation with those of the same network, or after 50 iterations (whichever comes first).   

Performance of the PINT algorithm in the ABIDE I sample showed that resolves 

within an average of 14 iterations (max: 36 iterations, see “ ABIDE I Dataset - Results.”) 

https://paperpile.com/c/I725z4/4eKFj
https://paperpile.com/c/I725z4/hwhLJ+Rjn7Q
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Using the CoRR test-retest data, we experimented with which PINT radius 

parameters would yield the highest test-retest results. Results are reported in Evaluating 

PINT Parameters. 
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Supplemental Table S2. Locations of the PINT ROIs.                              

            
   MNI coordinate   
Network Lobe hemi x y z Template 

Vertex ID 
Abbreviation 

Dorsal Attention 
Network 
(DA) 

Frontal L -27 -4 52 6111 DAF1L 
 R 27 -6 51 6141 DAF1R 
 L -49 4 31 19598 DAF2L 
 R 49 6 28 19537 DAF2R 
 L -29 -72 31 13828 DAP1L 
Parietal R 34 -68 34 13828 DAP1R 
 L -24 -58 60 14785 DAP2L 
 R 18 -60 62 12052 DAP2R 
 L -44 -34 42 7417 DAP3L 
 R 49 -30 44 7507 DAP3R 
Temporal L -47 -64 -2 23315 DAT1L 
 R 53 -58 -5 23315 DAT1R 

Default Mode 
Network 
(DM) 

Frontal L -32 21 48 30442 DMF1L 
 R 16 40 46 27830 DMF1R 
 L -6 58 21 28834 DMF2L 
 R 6 58 21 28834 DMF2R 
 L -9 46 -4 28175 DMF3L 
 R 9 44 -5 28175 DMF3R 
Parietal L -11 -50 32 13363 DMP1L 
 R 7 -56 29 11809 DMP1R 
 L -47 -60 30 16429 DMP2L 
 R 50 -59 26 16195 DMP2R 
Temporal L -58 -37 -3 9000 DMT1L 
 R 58 -31 -3 9000 DMT1R 
 L -61 -10 -19 32170 DMT2L 
 R 61 -6 -17 32221 DMT2R 

Fronto-Parietal 
Network 
(FP) 

Frontal L -6 24 41 2465 FPF1L 
 R 6 25 43 2424 FPF1R 
 L -22 11 53 30321 FPF2L 
 R 24 11 53 30321 FPF2R 
 L -43 23 33 30458 FPF3L 
 R 45 24 34 30458 FPF3R 
 L -37 46 15 29627 FPF4L 
 R 36 54 6 19783 FPF4R 
 L -33 19 -6 10957 FPF5L 
 R 31 24 -6 11073 FPF5R 
Parietal L -7 -71 44 12812 FPP1L 
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 R 8 -70 46 12848 FPP1R 
 L -48 -48 48 6841 FPP2L 
 R 40 -55 45 13895 FPP2R 
Temporal L -56 -50 -17 22055 FPT1L 
 R 59 -40 -15 21912 FPT1R 

Ventral Attention 
Network 
(VA) 

Frontal L -9 9 37 2453 VAF1L 
 R 9 10 39 2411 VAF1R 
 L -10 -1 69 3469 VAF2L 
 R 11 -1 70 3469 VAF2R 
 L -46 -3 50 5450 VAF3L 
 R 52 1 45 30946 VAF3R 
 L -53 8 1 18804 VAF4L 
 R 55 9 3 18804 VAF4R 
 L -30 40 29 29837 VAF5L 
 R 29 44 26 29591 VAF5R 
Insula L -37 9 -1 10782 VAI1L 
 R 40 12 -2 10782 VAI1R 
Parietal L -15 -33 40 4089 VAP1L 
 R 14 -30 40 4130 VAP1R 
 L -61 -30 26 17169 VAP2L 
 R 61 -35 32 9371 VAP2R 
Temporal L -53 -58 8 15764 VAT1L 
 R 56 -50 8 15844 VAT1R 

Sensory Motor 
Network 
(SM) 

Frontal L -4 -16 56 4632 SMF1L 
 R 5 -15 56 4632 SMF1R 
 L -26 -31 60 7662 SMF2L 
 R 26 -29 60 7662 SMF2R 
 L -54 -12 33 17981 SMF3L 
 R 54 -9 33 17981 SMF3R 
Insula L -38 -14 11 10427 SMI1L 
 R 40 -11 11 10427 SMI1R 
 L -59 -15 5 31742 SMT1L 
 R 60 -9 3 31742 SMT1R 

Visual Network Occipital L -36 -84 6 15123 VI01L 
(VI)  R 41 -79 6 15123 VI01R 
  L -16 -90 23 11965 VI02L 
  R 22 -87 24 11965 VI02R 
  L -2 -85 10 25314 VI03L 
  R 5 -83 12 25314 VI03R 
  L -11 -81 -10 24579 VI04L 
  R 13 -77 -8 24579 VI04R 
  L -27 -62 -11 24616 VI05L 
  R 28 -57 -12 24616 VI05R 
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ABIDE I Methods and Results 

Method 

Sample Preprocessing Pipeline and Quality Assurance 

ASD and TD resting state intrinsic connectivity was tested using the ABIDE dataset (ABIDE 

I release) (10). ABIDE is a publicly available multi-site dataset combining 17 scanning sites. 

Each site acquired a resting state fMRI and a T1-weighted anatomical scan. For details of 

the scanning parameters for each individual site see, 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html. Phenotypic information of 

diagnosis, sex, full-scale IQ and ADOS scores were taken from the ABIDE I phenotypic file 

for analyses. Data from the OHSU site were not included because the shorter duration of 

the resting state scans was not suitable for FSL’s ICA-FIX denoising (see Preprocessing 

Methods section, above). Data from the Stanford site were excluded due to poor quality of 

the anatomical images leading to a poor performance of the FreeSurfer pipeline. 

Demographic criteria from participants included in our analyses (n=393 ASD, n=496 TD, 

across 15 sites, ages 6-65) are described in Supplemental Table S2. Full-scale IQ was 

imputed, if not available, using the mean value from each participant’s site and diagnostic 

group (ASD vs TD). 

Preprocessing of images was completed as described in the ‘Preprocessing Pipeline’ 

section, above. Quality assurance metrics for the resting state scans were assessed using 

the Quality Assurance Pipeline (pulled from https://github.com/preprocessed-

connectomes-project/quality-assessment-protocol 20160715). Following QC, 393 of 539 

ASD participants and 496 of 573 TD participants were included in our analysis (for 

demographic criteria; see Supplemental Table S2). Participants were excluded for the 

following reasons: having a poor quality anatomical scan that failed FreeSurfer surface 

segmentation (n=128), failing to have full cortex coverage during the resting state scan 

(n=22), having a resting state scan with a framewise displacement greater than 1mm for 

greater than 5 percent of the resting state scan and/or having less than 6 “signal” ICA 

components (labeled by ICA-FIX) in the resting state scan (n=63).   

https://paperpile.com/c/I725z4/c1VQk
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Supplemental Table S3. Scanning parameters and participant demographics across 
sites. 
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Results 

Performance of the PINT Algorithm in ABIDE I 

For most ABIDE I participants (55.6%), PINT converges on a solution after a median of 14 

iterations (range 7-36). For remaining participants (44.4%), PINT starts oscillating 

between a handful of solutions within the same time frame (median 15; range 8-36 

iterations). This oscillating behaviour is stopped when PINT reaches 50 iterations (the 

vertex solution iteration 50 is kept). These “oscillating” solutions (i.e. the vertices at 

iteration 50 vs the vertices at iteration 49) differed in the location of a median of 4 ROIs 

(range 1-19) by an average of 2.21mm each. This represents an average total of 1.27% of 

the total ROI displacement for that scan. Whether PINT converged to a single solution or 

began oscillating was not associated with the participants’ diagnosis (chi-squared(1)=0.03, 

ns) 

 

Whole Brain Network Correlation Maps 

Supplemental Figures S1 and S2 show the seed correlation maps with the average 

timeseries from the network of interest calculated with template and personalized ROIs, 

respectively. The outlines of the Yeo et al. atlas (11) are plotted in white for each network.  

While the template ROIs used here are sampling only from 6mm circles in the center of the 

Yeo et al. atlas areas, the areas of higher correlation show strong visual correspondence 

with the Yeo seven network map. This correspondence remains for the personalized ROI 

derived correlation maps.  

 

https://paperpile.com/c/I725z4/KBieN/?noauthor=1
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Supplemental Figure S1. Whole brain correlations with template vertex seeds. 
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Supplemental Figure S2. Whole brain correlations with personalized vertex seeds. 
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Supplemental Figure S3. Probabilistic maps of personalized ROI locations by 
network.  
Color scale represents, for each vertex, the proportion of the ABIDE sample (n=889) where 
their 6mm radius personalized ROI encompassed that vertex. The Yeo et al. (2011) atlas 
outlines are also shown in white for reference. Note that the PINT algorithm was not given 
any information about the Yeo et al. (11) atlas borders. However, the final ROI locations 
tended to stay within the borders of the atlas.   

 
 

https://paperpile.com/c/I725z4/KBieN/?noauthor=1
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Supplemental Figure S4: No effect of in scanner head motion on PINT vertex 
displacement. 

Scatter plots showing mean vertex displacement during PINT (mean of 80 ROIs) as a 
function of two measures for in-scanner motion (top) and mean framewise displacement 
(bottom) DVARS. Regressions are unadjusted (left) and adjusted (right) for the effects of 
scanning site.   
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Supplemental Figure S5.  Average correlation matrices (Z-transformed) from ABIDE I 
participants (n=889) calculated A) before PINT correlation (“template” ROIs) and B) 
after PINT correction (“personalized” ROIs). 
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Supplemental Table S4. Mean (SD) network correlation (Z-transformed) from n=889 
ABIDE I participants for template (Before PINT) and personalized (After PINT) ROIs. 
        

  Within Network Correlation* Between Network Correlation** 

 Network 
Template 
(Before PINT) 

Personalized 
(After PINT) Difference 

Template 
(Before PINT) 

Personalized 
(After PINT) Difference 

  M(SD) M(SD) M(SD) M(SD) M(SD) M(SD) 

All Edges 

 VA 0.31(0.14) 0.45(0.18) 0.14(0.11) 0.16(0.10) 0.13(0.11) -0.03(0.04) 

 DA 0.37(0.16) 0.60(0.20) 0.23(0.11) 0.17(0.10) 0.15(0.11) -0.02(0.03) 

 DM 0.35(0.13) 0.59(0.18) 0.24(0.09) 0.09(0.10) 0.05(0.11) -0.04(0.04) 

 FP 0.27(0.11) 0.45(0.15) 0.18(0.09) 0.15(0.10) 0.12(0.11) -0.02(0.04) 

 SM 0.36(0.19) 0.50(0.24) 0.14(0.10) 0.16(0.11) 0.15(0.12) -0.01(0.04) 

 VI 0.51(0.23) 0.73(0.26) 0.22(0.10) 0.16(0.10) 0.15(0.11) -0.01(0.03) 

 Total 0.34(0.12) 0.52(0.13) 0.19(0.05) 0.15(0.10) 0.12(0.10) -0.02(0.02) 

Only Long Range connections (> 70mm apart on the Surface) 

 VA 0.31(0.14) 0.45(0.18) 0.14(0.11) 0.15(0.10) 0.13(0.11) -0.03(0.04) 

 DA 0.37(0.16) 0.60(0.20) 0.23(0.11) 0.17(0.10) 0.15(0.11) -0.02(0.03) 

 DM 0.35(0.14) 0.59(0.18) 0.24(0.09) 0.09(0.10) 0.05(0.11) -0.04(0.04) 

 FP 0.27(0.11) 0.44(0.15) 0.17(0.09) 0.14(0.10) 0.12(0.10) -0.02(0.04) 

 SM 0.36(0.19) 0.49(0.24) 0.14(0.10) 0.16(0.11) 0.15(0.12) -0.01(0.04) 

 VI 0.51(0.23) 0.72(0.26) 0.21(0.10) 0.15(0.10) 0.15(0.11) -0.01(0.03) 
 Total 0.33(0.12) 0.52(0.13) 0.18(0.05) 0.14(0.10) 0.12(0.10) -0.02(0.02) 
* Within network correlation is defined as the mean correlation of ROIs with ROIs from the same 
network.  
**Between network correlation is defined as the mean correlation of ROIs with those from a 
different network. 
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Supplemental Figure S6. Within ROI heterogeneity in resting state network 
correlation decreases with the application of PINT. 

We measure spatial heterogeneity by calculating the standard deviation (across the 
vertices of an ROI) of that ROI’s Z-transformed correlation with its own network. 
 ***= p<0.001  
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Supplemental Figure S7.  Scatter plot of distance from each participant’s 
personalized ROI location to the template vertex against age for both ASD and TD 
participants. 
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Supplemental Table S5. Association of ADOS total score with functional connectivity 
(n=264). 

 

Edge t-statistic p 
(uncorrected) 

p 
(corrected) 

r 
(raw) 

r 
(adjusted) 

DMF2R.SAF5L 11.94 0.0006 -- -0.2075 -0.1699 

DMF3L.SAF5L 19.25 0.0000 0.05 -0.2613 -0.2342 

DMF3L.SAF5R 11.18 0.0010 -- -0.2032 -0.1674 

DMF3L.SAP1L 12.47 0.0005 -- -0.2156 -0.1698 

DMT1L.SAP1L 11.29 0.0009 -- -0.2039 -0.1513 

DMT1R.EXF5L 11.52 0.0008 -- -0.2016 -0.1681 

EXF4L.SAT1L 13.07 0.0004 -- -0.2144 -0.1769 

EXT1L.VI04L 14.43 0.0002 -- -0.2211 -0.2181 

Note. Adjusted r reflects adjustment for age, full IQ, site, gender, and fMRI quality control metrics. 
Corrected p values with FDR. 

 
 

Supplemental Figure S8. Edges showing where a significant (FDR corrected) negative 
correlation between intrinsic connectivity and ADOS total scores was observed.  

Plots were generated using nilearn (12). 

 
  

https://paperpile.com/c/I725z4/AdwFn
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CoRR and ABIDE Longitudinal  

Methods 

Datasets 

Test-retest performance and longitudinal stability of the PINT algorithm was tested using 

three datasets of TD individuals obtained from the Consortium for Reliability and 

Reproducibility (CORR; 13), of similar age and scan parameters as ABIDE: 1) NYU_2 (DOI: 

http://dx.doi.org/10.15387/fcp_indi.corr.nyu2, ages 8-55, n=187 retested same session, 

n=62 with 6 month follow-up), 2) University of Utah (Utah_1; DOI: 

http://dx.doi.org/10.15387/fcp_indi.corr.utah1, n=26, ages 8-38, scanned 2 years apart 

with a repeated scan in the second session), 3) University of Pittsburgh, School of Medicine 

(UPSM, DOI: http://dx.doi.org/10.15387/fcp_indi.corr.upsm1; n=100, ages 10-20, scanned 

2 years apart). NYU_2 data was acquired on a Siemens Allegro scanner with EPI sequence 

parameters as follows: TR = 2000ms, TE = 15ms, 180 volumes, voxel size = 3 × 3 × 4mm3, 33 

interleaved slices, flip angle 90°, acquisition duration 6.00min. The Utah1 participants were 

scanned using a Siemens Tim Trio EPI sequence with parameters as follows: TR = 2000ms, 

TE = 28ms, 240 volumes, voxel size = 3.4 × 3.4 × 3 mm3, 40 interleaved slices, flip angle 90°, 

acquisition duration 8:06min. The UPSM participants were scanned using a Siemens Tim 

Trio EPI sequence with parameters as follows: TR = 1500ms, TE = 29ms, 200 volumes, 

voxel size = 3.1 × 3.1 × 4 mm3, 29 interleaved slices, flip angle 70°, acquisition duration 

5.06min. Quality assurance pipeline outputs for these data were downloaded from the 

Consortia (13) (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/qc.html). Scans were 

excluded if the field of view failed to capture the top of the head, or for excessive motion 

(greater than 25% of the timepoints having framewise displacement > 0.2mm). 

From those scans available after quality assurance, two scans for each available 

participant were carried forward for each analysis (see Supplemental Table S5 for 

demographic criteria of the employed samples).  

 
  

https://paperpile.com/c/I725z4/Z9t0d/?prefix=CORR%3B%20
http://dx.doi.org/10.15387/fcp_indi.corr.nyu2
http://dx.doi.org/10.15387/fcp_indi.corr.utah1
http://dx.doi.org/10.15387/fcp_indi.corr.upsm1
https://paperpile.com/c/I725z4/Z9t0d
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/qc.html
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Supplemental Table S6. Demographic information from the CoRR participants 
employed in this analysis. 

 UPSM NYU_2 Utah_1 

 
Longitudinal Same Session Longitudinal Same Session Longitudinal 

N 44 135 53 23 16 

Age at first scan 
(mean sd) 16.37 (2.14) 20.01 (9.99) 20.06 (10.51) 20.57 (8.39) 22.06 (7.95) 

Sex (Count Male %) 22 (50.0%) 84 (62.2%) 30 (56.6%) 23 (100%) 16 (100%) 

FIQ mean (sd) Not reported 
111.61 
(12.24) 

110.55 
(11.55) 113.65 (14.63) 111.25 (14.76) 

Days between scans 625.20 (150.98) N/A 71.92 (65.63) N/A 916.06 (81.50) 

 
 
The longitudinal stability of the PINT algorithm was tested in the ABIDE Longitudinal 

sample, a release of two year follow-up scans from n=21 participants from UCLA and n= 17 

participants from UPSM. The UCLA participants were scanned on a Siemens Tim Trio 

scanner with EPI sequence parameters as follows: TR = 3000ms, TE = 28ms, 120 volumes, 

voxel size = 3 × 3 × 4mm3, 34 interleaved slices, flip angle 90°, acquisition duration 6.06min. 

The UPSM participants were scanned using a Siemens Allegro EPI sequence with 

parameters as follows: TR = 1500ms, TE = 25ms, 200 volumes, voxel size = 3.1 × 3.1 × 4 

mm3, 29 interleaved slices, flip angle 70°, acquisition duration 5.06min.  

 

Preprocessing Workflow 

MR preprocessing workflow is the same as employed for ABIDE I and is described in the 

Technical Methods: Preprocessing Pipeline section, with the exception that the CoRR 

datasets’ surfaces were define using FreeSurfer v.6.0.0 (instead of v5.3.0). Due to the poor 

quality of anatomical scans from some UCLA participants, the FreeSurfer outputs from each 

subject’s higher quality timepoint (12 baseline, 9 follow-up) were used for all subsequent 

analyses of the same participant. For all other data, all scans were of sufficient quality such 

that the resting state data was mapped to the anatomical data collected within the same 

session. 
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Test-Retest Analysis of Resting State Connectivity 

We extracted average timeseries from the 6mm circular ROIs at both template locations 

and personalized locations. From these timeseries, within scan, Z-transformed correlation 

matrixes were calculated. We vectorized these timeseries and cross-correlated them 

between scans to build a “cross” scan correlation matrix. This matrix was decomposed into 

‘within-subject’ and ‘mean-cross-subject’ similarity scores for each ROI. Within-subject is 

the correlation between the same participant’s correlation matrix from baseline to follow-

up, and cross-subject is the mean of one participant’s baseline correlation matrix values to 

all other participants’ follow-up correlation matrices from the same site. Additionally, I2C2 

was calculated as an additional measure of test-retest reliability for both template and 

personalized ROI correlation matrices (14). 

Supplemental Figure S9. Between-subject and within-subject distance for 
personalized ROI locations by network. 
*p<0.05, **p<0.01, ***p<0.001 
 

  

https://paperpile.com/c/I725z4/hfSiQ
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Supplemental Table S7. Paired t-test results for within-subject and between-subject 
distances of PINT personalized ROI locations across site and diagnosis. 
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Supplemental Table S8. Comparison of within subject and cross subject correlation 
matrices, before and after PINT.  
The final correlation matrices produced from the 80 personalized ROI timeseries were 
more similar within-subject compared to cross-subject in all datasets tested. However, it 
should be noted that the within-subject to cross-subject difference was greater for 
correlation matrices calculated on the original template ROI locations compared to the 
personalized ROI locations. As a result, test-retest reliability (measured as intra-class 
correlation or I2C2 (14)) was higher for template ROIs than personalized ROIs. This was 
expected, as the PINT algorithm increased the within-subject correlation, but also the 
cross-subject correlation (i.e., it makes participants’ correlation matrices more similar).  
 

   Cross Scan Correlation (Z)   
Mean (SD) 

 
Paired t-test 
(Within vs Cross)  n I2C2 (95% CI) Within 

Subject 
Cross 
Subject 

Difference 

Personalized  ROIs 
  CoRR datasets 
    Utah Test-Retest 23 0.30 (0.23-0.37) 0.67(0.15) 0.50(0.06) 0.17(0.13) t(22)=6.26, p<10-5   
    Utah Long. 16 0.23 (0.18-0.26) 0.63(0.15) 0.55(0.09) 0.09(0.09) t(15)=3.75, p=0.002 
    NYU Test-Retest 135 0.25 (0.22-0.28) 0.63(0.16) 0.48(0.07) 0.15(0.13) t(134)=13.40, p<10-25 
    NYU Long. 53 0.23 (0.18-0.26) 0.62(0.15) 0.48(0.08) 0.14(0.11) t(52)=9.43, p<10-12 

    UPSM Long. 44 0.15 (0.08-0.21) 0.55(0.11) 0.46(0.05) 0.09(0.10) t(43)=6.00, p<10-6 
  ABIDE Longitudinal Sites 
    UCLA Long. 14 0.17 (0.13-0.21) 0.53(0.09) 0.44(0.06) 0.09(0.10) t(13)=3.57, p=0.003 
    UPSM Long. 17 0.21 (0.12-0.30) 0.58(0.09) 0.49(0.05) 0.09(0.06) t(16)=5.50, p<10-4  
Template ROIs 
  CoRR datasets 
    Utah Test-Retest 23 0.45 (0.39-0.50) 0.65(0.15) 0.31(0.05) 0.34(0.13) t(22)=12.94, p<10-11 
    Utah Long. 16 0.32 (0.29-0.36) 0.56(0.16) 0.34(0.07) 0.23(0.11) t(15)=8.39, p<10-6 
    NYU Test-Retest 135 0.35 (0.31-0.39) 0.56(0.16) 0.28(0.05) 0.28(0.13) t(134)=25.58, p<10-52 
    NYU Long. 53 0.32 (0.29-0.36) 0.54(0.14) 0.28(0.06) 0.26(0.11) t(52)=17.66, p<10-22 
    UPSM Long. 44 0.23 (0.17-0.30) 0.47(0.11) 0.27(0.04) 0.20(0.09) t(43)=13.82, p<10-16 
  ABIDE Longitudinal Sites 
    UCLA Long 14 0.25 (0.19-0.31) 0.41(0.10) 0.23(0.05) 0.18(0.08) t(13)=8.24, p<10-5 
    UPSM Long 17 0.31 (0.24-0.39) 0.50(0.07) 0.30(0.05) 0.20(0.06) t(16)=13.05, p<10-9 
 
 
  

https://paperpile.com/c/I725z4/hfSiQ
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Evaluation of PINT Parameters on Test-Retest Performance 

Methods 

We evaluated specific PINT parameters in terms of test-retest reliability in two CoRR 

datasets (NYU n = 135 and Utah n = 23). Three parameters, used by the PINT algorithm 

were evaluated. 

 

● Search Radius: This radius limits the distance that any vertex can move within one 

iteration of PINT (values tested: 4, 6, 8, 10 mm). 

● Padding Radius: This limits the distance between adjacent ROIs (values tested: 10, 

12, 14 mm). 

● Sampling Radius: The size of the radius for mean timeseries extraction (values 

tested: 4, 5, 6, 10 mm). 

 

Two measures of test-retest reliability were examined. In both cases, we use 

"distinctiveness" as our measure. This measure, which closely relates to the “fingerprint” 

test (15),  is computed by comparing the similarity (or distance) of one participant with 

their own retest-scan to that of one participant’s scan with all the retest scans within the 

dataset. This is expressed as a Z-score (i.e. where on the distribution of all (within and 

between) subject similarities does the within subject similarity fall). Higher values are 

better, as they would increase the likeliness of passing the "fingerprint" test.  The two 

measures of similarity were: 

 

1. PINT Location "distinctiveness" calculated from test-retest distances between the 

locations of the PINT ROIs. Measured using the mean geodesic distance (on the HCP 

S1200 Average mid thickness surface) between the PINT output vertices of two 

scans. Distance is averaged across the 80 ROIs. In its “raw” form, lower negative 

values represent more test-retest “distinctiveness” values. For easier interpretation 

and comparison with other measure, values were multiplied by -1 (i.e. larger 

positive represent more test-rested “distinctiveness”). 

https://paperpile.com/c/I725z4/uCMJO
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2. Personalized Correlation Matrix "distinctiveness" of the similarity of the 

correlation matrices from individual scans. Pearson correlation of the vectorized Z-

transformed upper triangle of the correlation matrix computed from the 

personalized vertices (similar to the measure used in (15)). 

 

Results 

PINT location distinctiveness and personalized correlation distinctiveness were combined 

into a test-retest score for every participant (using the sum of their squares). These three 

measures are plotted (mean ± standard error) as a function of sampling radius, search 

radius, and padding radius. The top ranking combination of parameters was: search radius 

= 6mm, padding radius = 12mm, sampling radius = 10mm. To understand these trends 

further, PINT location  "distinctiveness" and personalized correlation matrix 

"distinctiveness" were used as dependent variables in a linear mixed model analysis with  

search radius, padding radius, and sampling radius as linear fixed effects and with subject 

and scanner (NYU vs Utah) as random intercepts. In general, we observed that the padding 

radius had negligible effects on either measure (PINT locations: t = -1.58, p = 0.11, 

personalized correlation matrix: t = -1.18, p = 0.24). Search radius had opposing effects on 

either measure: with increasing search radius we observed lower personalized correlation 

matrix distinctiveness (t = -18.88, p < 10-16) but higher PINT location distinctiveness (t = 

11.68, p < 10-16).  A search radius of 6mm or 8mm appeared to be the best compromise of 

the two factors. The higher sampling radius was associated with increased correlation 

matrix distinctiveness (t = 32.5, p < 10-16), and a lessened beneficial effect on location 

distinctiveness (t = 2.51, p = 0.01). 

 
  

https://paperpile.com/c/I725z4/uCMJO
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Supplemental Figure S10: Evaluating the effects of PINT input parameters on test-
retest reliability of PINT results (n=158 test-retest participants).   
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Taken together, these test-retest analyses lend more confidence to our use of a 

search radius of 6mm and a padding radius of 12mm in the analyses reported throughout 

this manuscript. They also suggest that it may have been beneficial to increase the 

sampling radius from 6mm to 8mm or 10mm.  We therefore conducted PINT analyses in 

the ABIDE I sample using 8mm and 10mm search radii. The main results for our 

manuscript remained unchanged in both cases. Specifically, we found greater variability in 

the spatial locations of resting state networks within individuals with ASD as compared to 

TD. Comparison of intrinsic connectivity between groups revealed that the application of 

PINT decreased the number of hypo-connected regions in ASD.  

Table S9. Effects of ASD Diagnosis on vertex displacement and functional 
correlations after varying the PINT sampling radius settings. 

  
Effect of Diagnosis 
on Vertex 
Displacement 

Effect of ASD Diagnosis on functional correlation 
(Number of significant edges FDR corrected) 

PINT Sampling 
Radius 

Template 
Hypo/Hyper 

Personalized 
Hypo/Hyper 

Difference 
Hypo/Hyper 

6mm t=-3.23, p=0.001 214/0 80/4 -134/+4 

8mm t = -2.67, p=0.008 295/0 125/7 -170/+7 

10mm t=-2.53, p = 0.01 373/0 296/9 -77/+9 
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Supplemental Figure S11. Maximizing full correlation within the PINT algorithm increases 
the correlation (adjusted for scanning site and age) between functional connectivity and 
head-motion (mean framewise displacement), but maximizing partial correlation does not 
increase correlation between functional connectivity and head motion.  
 
The distribution of median (n=889 ABIDEI participants) edgewise correlations between 
functional correlation values and head motion (mean framewise displacement) are plotted 
for correlation matrices from Template (orange) and Personalized (green) calculated after 
PINT was run maximizing full correlation (top) and partial correlation (bottom). After 
maximizing full correlation the median correlation across edges, between functional 
correlation across subjects and head motion (measured as mean framewise displacement) 
increased substantially (Template median correlation: r = 0.10, Personalized median 
correlation: r = 0.17, t(6253) = 60.7, p < 10-1449). These results suggest that when PINT 
maximizes full correlation, it could be moving the ROIs to locations toward extreme values 
caused by head motion. This was not the case when maximizing partial correlation 
(accounting for the 5 other network timeseries). When PINT maximizes partial correlation, 
the median correlation between functional correlation and motion decreased slightly 
(Template median correlation: r = 0.10, Personalized median correlation: r = 0.09, t(6269) 
= -11.22, p < 10-52). Note that all results reported in this manuscript use the “maximizing 
partial correlation” variant of PINT. 
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connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat 
Neurosci. 18: 1664–1671. 
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