
Generalized additive model (GAM)

1 Simple to complex models

1.1 Linear Models (LM)

y ∼ N (µ, σ2) (1)

E(y) = µ = Xβ (2)

where y is the response vector, X is the design matrix, β is the vector of regression coefficients

1.2 Generalized Linear Models (GLM)

1. A probability distribution from the exponential family y ∼ ExpoFamily(µ, etc)

2. A linear predictor η = Xβ

3. A link function g such that E(Y ) = µ = g−1(η)

For more details, see https://en.wikipedia.org/wiki/Generalized_linear_model

For example

y is a continuous variable which follows a Gaussian distribution and g is an identity link function,

then the GLM returns to LM.

y ∼ N (µ, σ2) (3)

E(y) = µ = g−1(η) = Xβ (4)

y is a count variable which follows a Poisson distribution and g is a log link function.

y ∼ P(µ) (5)

E(y) = µ = g−1(η) = eXβ (6)

y is a categorical variable which follows a Categorical distribution and g is a logit link function

y ∼ Cat(µ) (7)
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E(y) = µ = g−1(η) =
eXβ

1 + eXβ
(8)

1.3 Generalized Addictive Model (GAM)

1. A probability distribution from the exponential family y ∼ ExpoFamily(µ, etc)

2. A linear predictor η = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm)

3. A link function g such that E(Y ) = µ = g−1(η)

where fi may be smooth functions with a specified parametric form (polynomial, un-penalized re-

gression spline of a variable) or may be specified non-parametric form.

Usually, people use R MGCV package to run GAM, for details please see https://m-clark.

github.io/docs/GAM.html. One important thing is to choose the smooth function f , the default

function of MGCV package is low rank thin plate spline function.

Consider the problem of estimating the smooth function f(x) where x is a d-vector, from n ober-

vations (yi, xi) such that

yi = f(xi) + εi (9)

where εi is a random error term. Thin plate splines can be used to estimate f by finding the

function g minimizing

‖y − g‖2+λJmd(g) (10)

where y is the vector of yi data, g = (g(xi), g(x2), · · · , g(xn))
′
, Jmd(g) is a penalty functional

measuring the wiggliness of g and λ controls the trade-off between data fitting and smoothness of

g. The wiggliness penalty is defined as

Jmd =

∫
· · ·
∫
Rd

∑
v1+···+vd=m

m!

v1! · · · vd!
(

∂mg

∂xv11 · · ·x
vd
d

)2dx1 · · · dxd (11)

Provided that we impose the technical restriction 2m > d, it can be shown that the function

minimizing above equation (10) has the form

g(x) =
n∑
i=1

δiηmd(‖x− xi‖) +
M∑
j=1

αjφj(x) (12)

where δ and α are unknown parameter vectors subject to the constraint that T
′
δ = 0 and Tij =

φj(xi). The M =
(
m+d−1

d

)
function φi are linearly independent polynomials spanning the space of
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polynomials in Rd of degree less than m.

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d log(r), d even

Γ(d/2−m)

22mπd/2(m−1)!
r2m−d, d odd

(13)

For more details of the smoothing function, see paper ”Thin plate regression splines”.
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