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Abstract

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with multiple biological etiologies and highly
variable symptoms. Using a novel analytical framework that integrates cortex-wide MRI markers of vertical (i.e., thickness,
tissue contrast) and horizontal (i.e., surface area, geodesic distance) cortical organization, we could show that a large multi-
centric cohort of individuals with ASD falls into 3 distinctive anatomical subtypes (ASD-I: cortical thickening, increased
surface area, tissue blurring; ASD-II: cortical thinning, decreased distance; ASD-III: increased distance). Bootstrap analysis
indicated a high consistency of these biotypes across thousands of simulations, while analysis of behavioral phenotypes
and resting-state fMRI showed differential symptom load (i.e., Autism Diagnostic Observation Schedule; ADOS) and
instrinsic connectivity anomalies in communication and social-cognition networks. Notably, subtyping improved
supervised learning approaches predicting ADOS score in single subjects, with significantly increased performance
compared to a subtype-blind approach. The existence of different subtypes may reconcile previous results so far not
converging on a consistent pattern of anatomical anomalies in autism, and possibly relate the presence of diverging
corticogenic and maturational anomalies. The high accuracy for symptom severity prediction indicates benefits of MRI
biotyping for personalized diagnostics and may guide the development of targeted therapeutic strategies.
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Introduction diagnostics and targeted therapy in ASD is high heterogeneity

Autism spectrum disorder (ASD) is a pervasive group of neuro-
developmental conditions currently diagnosed in >1% of chil-
dren (CDC 2014). ASD is characterized by impairments in social
cognition, communication, together with narrow and repetitive
behaviors and interests (American Psychiatric Association
2013). A key challenge for the development of objective

across individuals, not only with respect to behavioral symp-
toms but also in terms of etiological factors (Betancur 2011).
Structural magnetic resonance imaging (MRI) is suitable to
describe brain anatomy with high resolution, versatility, and
biological validity (Miller 2004; Toga et al. 2006). Several MRI
features have been applied to study atypical anatomy in
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autism, including morphological markers such as cortical thick-
ness and surface area (Ecker, Ginestet et al. 2013; Hazlett et al.
2017; Yang et al. 2016), measures of tissue intensity and con-
trast at the cortical interface (Petropoulos et al. 2006; Boddaert
et al. 2009; Andrews et al. 2017), as well as markers of distance
between different regions to index wiring cost (Ecker, Ronan
et al. 2013). Collectively, these indices capture important
aspects of both vertical as well as horizontal cortical organiza-
tion, and may thus reveal manifestations of different cortico-
genic and neurodevelopmental disruptions (Hong, Bernhardt,
Caldairou et al. 2017). However, previous studies that compared
cohorts with ASD to typical controls have reported rather
diverse morphological anomalies, with only little agreement of
results (DeRamus and Kana 2015; Bernhardt et al. 2017; Haar
et al. 2016).

One explanation for inconsistent findings might be the exis-
tence of different ASD subtypes which may each have a specific
neuroanatomical profile (Ecker and Murphy 2014). Conventional
analyses that compare ASD to control groups may average across
important inter-individual variability, ultimately representing a
suboptimal approach. Conversely, unsupervised statistical learn-
ing techniques provide an appropriate framework to detect
groups of individuals with similar profiles across multiple feature
dimensions. Notably, these approaches are not biased towards
the involvement of particular regions, and may identify complex
inter-feature relations not apparent from standard univariate
analyses. In other neurodevelopmental conditions, including
attention-deficit hyperactivity disorder, schizophrenia, and epi-
lepsy, these techniques have recently discovered subtypes with
divergent histopathological profiles (Bernhardt et al. 2015; Hong,
Bernhardt, Caldairou et al. 2017; Hong, Bernhardt, Gill et al. 2017)
and behavioral outcomes (Fair et al. 2012; Dias et al. 2015; Sun
et al. 2015; Yang et al. 2012; Van Dam et al. 2016), suggesting
benefits for early clinical prognosis.

We developed a novel multidimensional imaging framework
to address neuroanatomical variability across the autism spec-
trum. Our approach was developed on a subsample of the Autism
Brain Imaging Data Exchange I (ABIDE-I) repository, which aggre-
gates MRI and phenotypic information of individuals with ASD
and controls across multiple sites (Di Martino et al. 2014). In brief,
we profiled single individuals using a battery of MRI features that
tap into complementary aspects of brain anatomy (i.e., cortical
thickness, surface area, geodesic distance, tissue contrast).
Following the correction of age- and site-specific effects, we
applied agglomerative hierarchical clustering on these profiles to
partition our ASD group into new classes with distinct neuroana-
tomical phenotypes. We assessed symptom severity load and
intrinsic functional network anomalies in each class to determine
the clinical and functional significance of the MRI-driven sub-
types. To furthermore evaluate our approach in a diagnostic set-
ting, we assessed whether the subtyping procedure improved
individualized prediction of symptom severity using a supervised
pattern-learning paradigm.

Materials and Methods
Subjects

The current work was based on a previously described ABIDE-I
subsample (Valk et al. 2015). Briefly, we selected those sites that
included both children and adults with ASD and typical con-
trols, with >10 individuals/group (n = 297). We restricted the
analysis to males given the low prevalence of female data. A
detailed quality control (Valk et al. 2015) included only cases

with acceptable MRI and surface-extraction quality. This
resulted in 220 individuals from 3 sites: 1) NYU Langone Medical
Center (NYU, 52/40 ASD/controls); 2) University of Utah, School
of Medicine (USM, 20/22 ASD/controls); 3) University of Pittsburg,
School of Medicine (PITT, 35/51 ASD/controls).

Individuals with ASD had DSM-IV-TR diagnosis of Autistic
Disorder, Asperger's Disorder, or Pervasive Developmental
Disorder Not-Otherwise-Specified, established by expert clinical
opinion aided by “gold standard” diagnostic instruments: the
Autism Diagnostic Observation Schedule, ADOS (Lord et al. 2000),
and/or the Autism Diagnostic Interview-Revised, ADI-R (Lord
et al. 1994). Both instruments focus on 3 domains including recip-
rocal social interactions, communication and language, and
restricted/repeated behaviors. In PITT and USM datasets, indivi-
duals diagnosed with disorders such as Fragile-X or tuberous scle-
rosis were explicitly excluded. In the NYU dataset, individuals
with current chronic systemic conditions were excluded. Full-
scale/performance/verbal intelligence quotation (IQ) was mea-
sured by WASI, WAIS III, and/or WISC III (Wechsler 1999).
Controls had no history of mental disorders and were statistically
matched for age to the ASD group at each site.

MRI Acquisition

High-resolution T1-weighted images (T1w) and resting-state func-
tional MRIs (rs-fMRI) were available from all sites; they were col-
lected on 3T Siemens scanners. NYU data were acquired on an
Allegra using 3D-TurboFLASH for T1w (TR = 2530 ms; TE = 3.25 ms;
TI = 1100ms; flip angle = 7° matrix = 256 x 256; 1.3 x 1.0 x
1.3mm?> voxels) and GRE-EPI for rs-fMRI (TR = 2000ms; TE =
15ms; flip angle = 90° matrix = 80 x 80; 180 vols, 3.0 x 3.0 x
4.0mm?® voxels). PITT data were acquired on an Allegra using 3D-
MPRAGE for Tlw (TR = 2100ms; TE = 3.93ms; TI = 1000 ms; flip
angle = 7°; matrix = 269 x 269; 1.1 x 1.1 x 1.1 mm?® voxels) and 2D
EPI for rs-fMRI (TR = 1500 ms; TE = 35 ms; flip angle = 70°; matrix
size = 64 x 64; 200 volumes, 3.1 x 3.1 x 4.0 mm? voxels). USM data
were acquired on a TrioTim using 3D-MPRAGE for Tlw (TR =
2300 ms; TE = 2.91 ms; TI = 900 ms; flip angle = 9°; matrix = 240 x
256; 1.0 x 1.0 x 1.2 mm? voxels) and 2D EPI for rs-fMRI fMRI (TR =
2000ms; TE = 28ms; flip angle = 90°% matrix = 64 x 64; 240
volumes; 3.4 x 3.4 x 3.0 mm? voxels).

MRI Processing

a. Structural MRI. We used FreeSurfer (5.3; http:/surfer.nmr.
mgh harvard.edw/) to process T1w MRI. Details on the proces-
sing are described elsewhere (Fischl et al. 1999). Individual
surfaces were aligned to an average spherical representation,
fsaverage5 (a triangular mesh with 20484 surface points or
“vertices”), improving point-correspondence with regards to
sulcation. Extractions were visually inspected and segmentation
inaccuracies manually corrected by 2 raters blind to diagnosis
(SLV, BCB). Subjects with faulty segmentations, movement, or
other artifacts were excluded (n = 77/297).

b. rs-fMRI. We examined the ABIDE I rs-fMRI data, prepro-
cessed by the ABIDE Preprocessed Connectome Project
(http://preprocessed-connectomes-project.org/abide/) initia-
tive. Processing was based on C-PAC (https://fcp-indi.github.
io/) and included slice-time and head motion correction,
skull stripping, and intensity normalization. Statistical cor-
rections furthermore removed effects of head motion
(Friston et al. 1996) and the top 5 principal components from
white matter and cerebro-spinal fluid (using “CompCor”
(Behzadi et al. 2007)), and linear/quadratic trends. After band-
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pass filtering (0.01-0.1 Hz), we registered the functional data to
the MNI152 template through a combination of linear and
non-linear transformations. We non-linearly registered the
Tlw to the same template, and projected cortical surfaces
onto rs-fMRI. The position of surfaces in rs-fMRI was visually
evaluated and confirmed for each case. Finally, we mapped
voxel-wise fMRI time-series to surface models running at 50%
thickness using nearest neighbor interpolation and applied a
surface-based 5mm full-width-at-half-maximum Gaussian
diffusion kernel.

MRI quality control was complemented by assessment of signal-
to-noise ratio (SNR) and visual scoring of surface extraction for
structural MRI, and evaluation of temporal derivatives of time
courses and mean frame-wise displacement (FD) for rs-fMRI
(Jenkinson et al. 2002; Power et al. 2012) (Supplementary Fig. 1).

Surface-based Feature Generation

For subject-wise neuroanatomical profiling (Fig. 1), we computed 4
features previously reported as abnormal in neuroimaging and
postmortem studies of ASD (Avino and Hutsler 2010; Wegiel et al.
2010; Ecker, Ginestet et al. 2013; Ecker, Ronan et al. 2013;
Bernhardt et al. 2014; Wallace et al. 2013; Yang et al. 2016).
Notably, while cortical thickness and intensity contrasts are com-
mon features to describe vertical cortical organization, surface
area and geodesic distance index properties of the cortical ribbon
in horizontal direction (Ecker, Ronan et al. 2013; Hong et al. 2016):

a. “Cortical thickness” was measured as the distance of corre-
sponding vertices between the gray-white and pial bounary.
It has previously been related to neuronal/synaptic density
(Huttenlocher 1990; la Fougere et al. 2011).

b. “Intensity contrast” was quantified as the intensity gradient
between voxels 0.5 mm above/below the gray-white matter
boundary in surface-normal direction. Reduced contrast
may signify “cortical blurring”, a remnant of atypical neuro-
nal migration and cortical organization (Wegiel et al. 2010;
Casanova et al. 2013; Andrews et al. 2017; Hong, Bernhardt,
Caldairou et al. 2017).

c. “Cortical surface area” was measured as the area of triangles
surrounding a vertex along the white matter interface
(Winkler et al. 2012; Ecker, Ginestet et al. 2013; Wallace et al.
2013). Areal changes possibly reflect alterations in cortical
columnar organization (Casanova et al. 2002) and atypical pro-
liferation of radial unit progenitor cells (Ecker and Murphy
2014).

d. “Geodesic distance” was measured as length of the shortest
path between 2 points (i.e., 2 surface vertices) running
through the cortical mantle using an approach invariant to
mesh configuration (Griffin 1994). This metric has been related
to “intrinsic cortico-cortical connectivity”, with closer vertices
being more closely integrated, and structural wiring cost
(Ecker, Ronan et al. 2013).

Feature maps were smoothed on tessellated surfaces using a
20mm full-width-at-half-maximum kernel. Surface-based
smoothing reduces measurement noise but preserves sensitivity
for localization, as it respects cortical topology (Lerch and Evans
2005). Prior to subtyping, we statistically corrected features for
age and site effects. Following previous recommendations, we
additionally corrected intensity contrast for mean gray/white
matter intensity (Davatzikos and Resnick 2002; Salat et al. 2011),
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surface area for total white matter volume (Ecker, Ginestet et al.
2013), and geodesic distance for total surface area (Ecker, Ronan
et al. 2013). Site effects were indeed removed from all features
(Supplementary Fig. 2), and there were no significant site-by-
group interactions following the correction.

We furthermore assessed test-retest correlations for our
features, that is, cortical thickness, surface area, contrast, and
geodesic distance. We used data from 25 healthy individuals
that were scanned twice in the same session and openly shared
through the Consortium for Reliability and Reproducibility
repository, CoRR [site: NYU-2; (Zuo et al. 2014)]. Generating MRI
features using identical processing as in our original study, we
computed surface-wide correlations between the first and sec-
ond scan for all individuals. Correlation coefficients were above
0.9 across all features (mean+SD r: cortical thickness = 0.91
+0.07, surface area = 0.97+0.09, intensity = 0.91 + 0.08, distance
= 0.99+0.03), indicating high stability.

Neuroanatomical ASD Subtyping

At each surface point, we normalized feature data in each individ-
ual with ASD against the corresponding distribution in controls
using vertex-wise z-scoring (Bernhardt et al. 2015). Concatenating
normalized feature vectors across subjects yielded a multi-variate
profile matrix with 113 rows (one per subject) and 81936 columns
(4 features with 20484 entries each). Prior to clustering, we evalu-
ated feature cross-correlations for each subject. Correlation coeffi-
cients were small-to-moderate (“thickness-vs-contrast” = —-0.16 +
0.14, “thickness-vs-area” = —0.07 + 0.09, “thickness-vs-distance” =
-0.10 + 0.13, “contrast-vs-area” = 0.01 + 0.11, “contrast-vs-
distance” = 0.05 + 0.2, “area-vs-distance” = 0.34 + 0.09), supporting
feature complementarity.

Agglomerative hierarchical clustering partitioned our ASD
group into subclasses, with cases in the same class having sim-
ilar profiles, while those in different classes had different pro-
files. Between-cluster distances were estimated using “Ward’s”
minimum variance approach (Ward 1963). The clustering solu-
tion depends on the number of a priori selected classes k. After
evaluating k = 1-20, (we determined the optimal k as the one
minimizing the ratio between intra-cluster to inter-cluster dis-
tance (Davies and Bouldin 1979).

For each newly detected ASD subtype, we compared structural
profiles across all 4 features relative to controls using surface-
based Student’s t-tests (Worsley et al. 2009). To evaluate repro-
ducibility of these profiles, we carried bootstrap-based stability
tests with 1000 iterations. In each iteration, we re-clustered ran-
domly subsampled subjects with replacement from our ASD
cohort and comparing them to healthy controls. Results were cor-
rected for multiple comparisons at a false discovery rate of gepr =
0.0125 = 0.05/4, additionally accounting for the number of features
assessed (Benjamini and Hochberg 1995).

To assess specificity, we repeated the clustering of multi-
dimensional MRI features in controls, where feature z-scores
were computed using a leave-one-out strategy, in which a sin-
gle individual was normalized based on the distribution of all
remaining controls.

Relation to Behavioral Symptoms and Functional
Networks

We complemented class-wise structural mapping by compar-
ing demographic and clinical variables between ASD subtypes,
including age, full-scale IQ, and ADOS symptom severity using
Student’s t-tests. We verified that classes were composed out
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Figure 1. ASD subtyping. (A) Top: The 4 MRI-based features (cortical thickness, surface area, intensity contrast, geodesic distance) used for subject-wise profiling.
Bottom: Three classes (ASD-I, I, 11I) optimally described our multi-centric cohort. Features are corrected for age and site effects. Shown are differences in MRI features
compared to controls (increases/decreases in red/blue). Cortex-wide significances were corrected using the false discovery rate procedure, furthermore adjusted by
the number of features (qrpr < 0.05/4 = 0.0125). (B) Symptom severity profiles of ASD classes based on total and domain-specific ADOS scores (i.e., social interaction,
communication, repeated behavior). **Difference between subgroups at qepr < 0.05; *Difference at P < 0.05 uncorrected.

of similar proportions of individuals per site, based on Fisher’s
exact tests.

We related our classes to intrinsic functional networks
thought to contribute to social cognition/interactions and
communication-key processes known to be impaired in ASD.
We extracted regions-of-interest (ROIs) from Neurosynth.org, a
platform for large-scale synthesis of previous fMRI results

National Univ of Singapore user

(Yarkoni et al. 2011). To approximate the network involved in
social cognition/interaction, we applied reverse inference on the
terms “mentalizing”, “social interactions”, and “social cognition”
and formed the geometric union of findings. To approximate the
network involved in verbal/non-verbal communication, we
applied reverse inference on the terms “language”, “gesture”, and

“facial expression” and formed their geometric union. After
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projecting ROIs on the cortical surface of individual subjects, we
systematically extracted mean functional time-series for each ROI
and computed inter-ROI time-series correlations to construct men-
talizing and communication networks for each subject. Functional
connectivity estimates in each class were finally compared to con-
trols, with age, site, and mean FD as nuisance variables (Power
et al. 2012). Similar to the structural analyses, we corrected findings
at gepr = 0.05/2, accounting for the 2 networks tested.

Automated Prediction of Symptom Severity

We developed a supervised learning framework predicting ADOS
symptom severity scores in individual patients based on MRI pro-
files. To evaluate benefits of our subtyping, we compared predic-
tion performance between learners operating on each newly
discovered class independently to that of a learner operating on
the full dataset without clustering. To reduce data dimensionality,
we parcellated the brain into 1000 regions-of-interest (ROIs) with
comparable surface area (Cammoun et al. 2012). This approach
first identifies macroscopic parcels using automated anatomical
labeling (AAL) (Tzourio-Mazoyer et al. 2002). We estimated the
number of ROIs per AAL parcel according to its surface area rela-
tive to the whole-cortex. Through repeated k-means clustering
with different random seeds within each AAL parcel, we system-
atically subdivided each parcel 100 times and determined the con-
sensus parcellation across all initializations. Calculating mean
feature values in these parcels resulted in 4000 features per sub-
ject (i.e., 4 features x 1000 parcels).

Prediction encompassed 2 stages: “model building” (feature
selection, training, validation) and “testing” (performance evalua-
tion). Both stages relied on “ensemble” methods that combine
several weaker base classifiers to generate a final, strong classifier
(Dietterich 2000). For feature selection, we used a “random forest”,
which constructs multiple decision trees and reduces overfitting
by randomly choosing subsets of features (Breiman 2001). For
actual prediction, we applied “gradient boosting”, which opti-
mizes performance by iteratively giving higher weights to previ-
ously misclassified cases (Friedman 2002). Optimal parameters
were determined through grid search (“random forest”: 100 trees,
100 randomly sampled features, minimum leaf size = 5; “gradient
boosting”: 100 boosts, 5 features at each split, minimum leaf size
=5, least square regression learner).

Model building and testing followed nested 10-fold cross-vali-
dation with 100 iterations. At each iteration, 9-folds of dataset
were used for model training and validation in an out-of-bag
mode (i.e., 75% of data in the 9-folds were subsampled for feature

Table 1 Demographic and clinical data
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selection and training, the remaining 25% for validation and
parameter optimization). The remaining fold was used for testing.
Notably, feature selection iteratively collected metrics giving a
positive contribution to prediction during out-of-bag validations,
and stopped the procedure if >20 features were found.

We carried out 1000 permutation tests with randomly shuf-
fled ADOS scores to determine whether classifier performance
exceeded chance. Moreover, observed and predicted ADOS
scores were compared using the Pearson correlation coefficient,
r, and mean absolute error, MAE. Two-sample t-tests compared
indices between a framework with/without clustering.

Results
Demographic and Clinical Data

Across sites, ASD and controls had similar age (mean + SD in
years: ASD: 20.9 + 8.0; Controls: 19.3 + 7.3; P = 0.14). Conversely,
individuals with ASD had lower full-scale IQ (ASD: 104 + 16;
Controls: 114 + 12; P < 0.001), performance 1Q (ASD: 106 + 15;
Controls: 112 + 13; P < 0.002), and verbal IQ (ASD: 102 + 17,
Controls: 113 + 12; P < 0.001) compared to controls. ADOS was
available for raw score across all patients (total [social and com-
munication]: 12.7 + 3.7; social: 8.4 + 2.7; communication: 4.3 +
1.5; repeated behavior: 2.0 + 1.5). ADOS calibrated severity scores
(CSS), which account for subject characteristics that may contrib-
ute to ADOS score variability, were provided for some but not all
cases in the ABIDE dataset. We therefore followed a previously
proposed heuristic (Moradi et al. 2017) to approximate CSS con-
sistently across all cases using established conversion criteria
(Gotham et al. 2009; Hus and Lord 2014). For each individual, we
used the information of a raw ADOS score (i.e., a total of the
social and communication items), age, and ADOS modules used
and retrieved an approximate severity score using a lookup table
provided by Gotham et al. (module 1-3) and Hus and Lord (mod-
ule 4) (calibrated total score: 7.8 + 1.7; modules: module 1 [none],
module 2 [n = 1], module 3 [n = 40], module 4 [n = 66]).
Demographic patterns were similar across the 3 sites, except for
no difference of IQ compared to controls (P > 0.3) in PITT, while
IQ was lower in ASD than in controls in the other sites. For
breakdown by site, please see Table 1.

=+
=

ASD Subtyping: MRI Findings

Results of the hierarchical clustering are shown in Fig. 1. Our
ASD cohort was optimally partitioned by 3 classes, based on the

Controls (113)  ASD (107) USM PITT NYU
Controls (40) ASD (52) Controls (22) ASD (20) Controls (51) ASD (35)

Age 193+73 20.9+8.0 21.5+78 236+76 19.7+7.0 20.8+7.3 175+6.7 16.8+7.5
1Q 114 +12.3 104 + 15.7 115+ 13.9 101 + 16.5 110 + 8.95 113 +13.5 115+ 121 105 +13.8
Type (A/AS/P) — 94/10/3 — 51/0/1 — 20/0/0 — 23/10/2
ADOS

Total® — 12.7 + 3.7 — 13.6+33 — 127 +3.1 — 113+4.2

Social — 84+27 — 89+25 — 85+23 — 7.7 £3.0

Comm — 43+15 — 47 +14 — 43+11 — 36+17

Repeat — 20+15 — 1.8+1.8 — 27+12 — 21+1.1

Age, full-scale IQ, and severity symptom scores are presented in mean + SD. Abbreviation: “ASD”, autism spectrum disorder; “A”, “AS”, “P” in Type represents Autism,
Asperger Syndrome and Pervasive developmental disorder—not otherwise specified, respectively; “ADOS”, Autism Diagnostic Observation Schedule; “IQ”, intelligence
quotient; “Social”, social interaction; “Comm”, communication; “Repeat”, stereotyped behaviors and restricted interests.

2Total score = social interaction + communication.
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ratio of intra-/inter-cluster distances (Supplementary Fig. 3),
which showed distinctive MRI profiles compared to controls.
ASD-I (n = 36) displayed diffusely increased thickness (qepr <
0.0125; mean + SD Cohen’s d in regions of findings = 0.67+0.17),
together with cortical interface blurring in frontal, parietal, and
temporal lobes (gepr < 0.0125; d = 0.65+0.07). Separate analysis
additionally correcting thickness measures for blurring showed
virtually identical findings (Supplementary Fig. 4). Moreover,
while geodesic distance was not altered in this group, we
observed increased medial parietal surface area (qgpr < 0.0125; d
= 0.74+0.06). Conversely, ASD-II (n = 19) presented with wide-
spread thinning in central and posterior cortices, together with
increased contrast in lateral occipital cortices and decreased dis-
tance of a large left frontal territory spanning from frontopolar to
central regions (gepr < 0.0125; d > 0.60 across features). Last,
ASD-III (n = 52) presented with a selective increase in distance of
insular-opercular regions (qepr < 0.0125; d = 0.58+0.03), but other-
wise normal profiles.

Bootstrap stability analyses supported high reproducibility
of our biotyping, confirming the signature anomalies in the dis-
covered biotypes (i.e., increased cortical thickening/blurring in
ASD-I; decreased distance in ASD-II; increased distance in ASD-
ITI) in 75-100% of the simulations (Supplementary Fig. 5).

Given findings suggesting effects of subtle head motion on
structural MRI markers (Reuter et al. 2015), we adopted a recent
approach to approximate the tendency of a subject to move in
the scanner based on head motion parameters derived from
resting-state fMRI (Savalia et al. 2017). Here, we corrected struc-
tural MRI profiles for mean FD and the number of TRs with
excessive FD (>0.2mm) (Jenkinson et al. 2002; Power et al.
2012). Repeating the clustering for corrected features yielded 3
classes with similar overall imaging phenotypes, suggesting
only little influence of motion on the subtyping solution
(Supplementary Fig. 6).

Clustering in controls revealed 2 classes. Notably, altera-
tions were not significantly different from zero following cor-
rection for multiple comparisons, supporting that control
classes likely fell into the spectrum of normal brain variability
(Supplementary Fig. 7).

ASD Subtyping: Clinical Findings and Functional
Network Anomalies

While newly discovered ASD classes showed similar age, 1Q,
and site composition (P > 0.2) (Table 2), they differed with
regards to total ADOS symptom severity (ANOVA F = 4.02, P =
0.021), particularly when comparing ASD-II and ASD-III to ASD-I
(grpr < 0.04). Findings were primarily related to selective defi-
cits in ADOS social interaction subscores (grpr < 0.05), and mar-
ginally to ADOS communication subscores (uncorrected P <
0.03). Conversely, there was no between-class difference with
respect to repetitive behavioral ADOS subscores.

Repeating group comparisons based on approximated cali-
brated symptom severity scores resulted in between-class dif-
ferences that were similar to findings based on raw ADOS
scores (ASD-I vs. ASD-II: 7.2+1.7 vs. 8.3+1.9, gepgr < 0.05, t = 2.16;
ASD-I vs. ASD-III: 7.2+1.7 vs. 8.2+1.6, Qepr < 0.02, t = 2.61).

Mirroring symptom load, classes presented with differential
intrinsic functional network anomalies (Fig. 2). Considering
functional connectivity related to mentalizing NeuroSynth ROIs,
we observed marked decreases in ASD-II and ASD-III compared
to controls, particularly between temporal and medial frontal
ROIs (qrpr < 0.025; d = 0.61+0.12), whereas ASD-I presented with
only sporadic connectivity decreases (gepr < 0.025; d = 0.50).

Table 2 Demographic and clinical profiles across subgroups

ASD1 (36) ASD2 (19) ASD3(52)

Age 21.1+10.5 213+7.7 205+6.1
1Q 105 +17.8 107 + 14.5 103 + 14.6
Site (USM/PITT/NYU) 17/5/14 9/6/4 26/9/17
Type (A/AS/P) 31/4/1 19/0/0 44/6/2
ADOS

Total 11.3 + 3.0 13.7 + 4.4 132+ 36

Social 74+23 9.1+3.0 89+26

Comm 39+13 47 +16 44+16

Repeat 22+13 17+14 20+17

See Table 1 for further details.

Similar findings were observed in language and communication
networks, with marked decreases in ASD-II and III (qgpr < 0.025;
d > 0.46) and only marginal differences in ASD-I.

Prediction of ADOS Scores

Class-informed learners predicted ADOS severity scores highly
correlating with the actual scores (mean + SD across 100x10-
folds: r = 0.47+0.04; MAE = 2.59+0.10; P < 0.001; Fig. 3 shows fea-
tures contributing to optimal performance). Permutation tests
with randomly shuffled ADOS labels showed that our approach
exceeded chance levels (P = 0.001). Repeating the prediction
experiment using approximated calibrated symptom severity
scores demonstrated a slightly lower, but still significant accu-
racy (r = 0.25+0.05, MAE = 1.46 + 0.04, P < 0.05).

Performance of class-based learners was consistently high
across all ASD subgroups (ASD-I: r = 0.48+0.07, MAE = 2.08+0.14;
ASD-II: r = 0.44+0.11, MAE = 3.26+0.31; ASD-IIl: r = 0.38+0.08,
MAE = 2.71+0.17). Notably, simply splitting the ASD cohort into
equally sized random subgroups did not yield comparable
accuracy across 100 iterations (Group-I: r = —0.10+0.22, MAE =
3.41+0.45; Group-II: r = —0.11+0.20, MAE = 4.36+0.58; Group-III: r
= 0.0+0.10, MAE = 3.44+0.32). This suggests that high perfor-
mance of the class-wise learner is not simply related to poten-
tial overfitting when operating on smaller partitions of the data
(Schnack and Kahn 2016; Arbabshirani et al. 2017), but rather
due to meaningful data sub-categorization.

We did not observe strong ADOS prediction when the lear-
ners were built across entire dataset (i.e., when no class infor-
mation was used; r = —0.12+0.07; MAE = 3.56+0.11; P > 0.4).
Indeed, directly comparing 