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This document is about the derivation of Partial Least Squares Correlation (PLSC) which is

mainly used in neuroimaging

1 Problem Statement

Given two random vectors ~x, ~y, which has been demeaned, we want to find two transformation ~w,~c

t = ~wT~x (1)

u = ~cT~y (2)

to maximize the covariance between random variable t and u

max(E[tu])2 (3)

under the condition that

~wT ~w = 1 (4)

~cT~c = 1 (5)

2 Solution

max
||~w||=1,||~c||=1

(E[tu])2 = max(E[~wT~x~yT~c])2 (6)

= max(~wTCxy~c)
2 (7)

By using Lagrange multiplier, we get following equation

L(~w,~c) = (~wTCxy~c)
2 − λw(||~w||−1)− λc(||~c||−1) (8)

∂L

∂w
= 2(~wTCxy~c)Cxy~c− 2λw ~w = 0 (9)

∂L

∂c
= 2(~wTCxy~c)(~w

TCxy)T − 2λc~c = 0 (10)
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Times ~wT ,~cT in both sides

~wT (~wTCxy~c)Cxy~c = λw ~w
T ~w (11)

~cT (~wTCxy~c)Cyx ~w = λc~c
T~c (12)

Since ~wT ~w = 1,~cT~c = 1

(~wTCxy~c)
2 = λw (13)

(~wTCxy~c)
2 = λc (14)

It’s easy to see that λ = λw = λc.

We can also write the above function in this way

~wTCxy~c =
√
λ (15)

Substitute above Equation into Eq. (9) and Eq. (10), we can get following

Cxy~c =
√
λ~w (16)

Cyx ~w =
√
λ~c (17)

The above equation shows that ~w,~c are singular vectors of Cxy.

[
0 Cxy

Cyx 0

][
~w

~c

]
=
√
λ

[
~w

~c

]
(18)

We can rewrite Eq. (17) as

~c =
1√
λ
Cyx ~w (19)

Then substitute Eq. (19) into Eq. (16)

CxyCyx ~w = λ~w (20)

Similarly, we can get

CyxCxy~c = λ~c (21)

Theorem: Singular Value Decomposition (SVD)

If A = USV T , then U and V are eigenvectors of AAT and ATA

A = USV T (22)

UTU = V TV = I (23)

AATU = USV TV SUTU = US2 (24)

ATAV = V SUTUSV TV = V S2 (25)[
0 A

AT 0

][
U

V

]
=

[
U

V

]
S (26)
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By comparing Eq. (20) and (24), we can know that ~w is a singular vector of Cxy and ~c is

a singular vector of Cyx. Therefore, by doing a simple SVD of Cxy we can get ~w from U , ~c

from V . And, this matches the solution in the paper ”Partial Least Squares (PLS) methods for

neuroimaging: A tutorial and review”.
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