Partial Least Square (PLS)
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This document is about the derivation of Partial Least Squares Correlation (PLSC) which is
mainly used in neuroimaging
1 Problem Statement
Given two random vectors &, ¢, which has been demeaned, we want to find two transformation i, ¢

t=wl® (1)

w=2y (2)

to maximize the covariance between random variable ¢ and

max(E[tu])? (3)
under the condition that
wTi =1 (4)
de=1 (5)
2 Solution
oy (Eltu))? = max( B 5 ) (6)
= max(w’ Cy,0)? (7)

By using Lagrange multiplier, we get following equation

L(@,8) = (0" Cay@)® = Ao (||| =1) = Ae(]]l[ 1) (8)
oL » . B

5 = 2T Cpyy@) Cloyy@ — 200 = 0 (9)

?){? = 2(W7 Cpy@) (W Cy)T — 2)\C=0 (10)



Times @', € in both sides

W (07 Oy @)y € = Np0! @ (11)
& (W1 Cy@) Oyl = Ao (12)
Since wTw =1,éTé¢=1
(wTCwya2 = Auw (13)
(@7 Cy@)? = A (14)

It’s easy to see that A = A\, = A..

We can also write the above function in this way

w7 Cpy@ = VX (15)
Substitute above Equation into Eq. (9) and Eq. (10), we can get following

Coy@= V0 (16)

Cyetl = VAZ (17)

The above equation shows that , ¢ are singular vectors of Cy,.

0 C; v )
N R NV (18)
Cye 0 é c
We can rewrite Eq. (17) as
1
¢ = —=CyW 19
7, (19)
Then substitute Eq. (19) into Eq. (16)
CryCypW = A0 (20)
Similarly, we can get
CyeCryC = AC (21)
Theorem: Singular Value Decomposition (SVD)
If A=USVT, then U and V are eigenvectors of AAT and AT A
A=USVT (22)
UTu=vlv =1 (23)
AATU =UsvTvSUTU = US? (24)
ATAV =vsuTusvTv =vs? (25)
0 A U U
= S 26
AT 0 Vv Vv (26)




By comparing Eq. (20) and (24), we can know that @ is a singular vector of Cy, and ¢ is
a singular vector of C,,. Therefore, by doing a simple SVD of C,, we can get @ from U, ¢
from V. And, this matches the solution in the paper ”Partial Least Squares (PLS) methods for

neuroimaging: A tutorial and review”.
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