Partial Least Square (PLS)

Nanbo Sun

This document is about the derivation of Partial Least Squares Correlation (PLSC) which is mainly used in neuroimaging

1 Problem Statement

Given two random vectors \vec{x}, \vec{y}, which has been demeaned, we want to find two transformation \vec{w}, \vec{c}

$$
\begin{align*}
& t=\vec{w}^{T} \vec{x} \tag{1}\\
& u=\vec{c}^{T} \vec{y} \tag{2}
\end{align*}
$$

to maximize the covariance between random variable t and u

$$
\begin{equation*}
\max (E[t u])^{2} \tag{3}
\end{equation*}
$$

under the condition that

$$
\begin{align*}
\vec{w}^{T} \vec{w} & =1 \tag{4}\\
\vec{c}^{T} \vec{c} & = \tag{5}
\end{align*}
$$

2 Solution

$$
\begin{align*}
\max _{\|\vec{w}\|=1,\|\vec{c}\|=1}(E[t u])^{2} & =\max \left(E\left[\vec{w}^{T} \vec{x} \vec{y}^{T} \vec{c}\right]\right)^{2} \tag{6}\\
& =\max \left(\vec{w}^{T} C_{x y} \vec{c}\right)^{2} \tag{7}
\end{align*}
$$

By using Lagrange multiplier, we get following equation

$$
\begin{gather*}
L(\vec{w}, \vec{c})=\left(\vec{w}^{T} C_{x y} \vec{c}\right)^{2}-\lambda_{w}(\|\vec{w}\|-1)-\lambda_{c}(\|\vec{c}\|-1) \tag{8}\\
\frac{\partial L}{\partial w}=2\left(\vec{w}^{T} C_{x y} \vec{c}\right) C_{x y} \vec{c}-2 \lambda_{w} \vec{w}=0 \tag{9}\\
\frac{\partial L}{\partial c}=2\left(\vec{w}^{T} C_{x y} \vec{c}\right)\left(\vec{w}^{T} C_{x y}\right)^{T}-2 \lambda_{c} \vec{c}=0 \tag{10}
\end{gather*}
$$

Times \vec{w}^{T}, \vec{c}^{T} in both sides

$$
\begin{array}{r}
\vec{w}^{T}\left(\vec{w}^{T} C_{x y} \vec{c}\right) C_{x y} \vec{c}=\lambda_{w} \vec{w}^{T} \vec{w} \\
\vec{c}^{T}\left(\vec{w}^{T} C_{x y} \vec{c}\right) C_{y x} \vec{w}=\lambda_{c} \vec{c}^{T} \vec{c} \tag{12}
\end{array}
$$

Since $\vec{w}^{T} \vec{w}=1, \vec{c}^{T} \vec{c}=1$

$$
\begin{gather*}
\left(\vec{w}^{T} C_{x y} \vec{c}\right)^{2}=\lambda_{w} \tag{13}\\
\left(\vec{w}^{T} C_{x y} \vec{c}\right)^{2}=\lambda_{c} \tag{14}
\end{gather*}
$$

It's easy to see that $\lambda=\lambda_{w}=\lambda_{c}$.
We can also write the above function in this way

$$
\begin{equation*}
\vec{w}^{T} C_{x y} \vec{c}=\sqrt{\lambda} \tag{15}
\end{equation*}
$$

Substitute above Equation into Eq. (9) and Eq. (10), we can get following

$$
\begin{align*}
& C_{x y} \vec{c}=\sqrt{\lambda} \vec{w} \tag{16}\\
& C_{y x} \vec{w}=\sqrt{\lambda} \vec{c} \tag{17}
\end{align*}
$$

The above equation shows that \vec{w}, \vec{c} are singular vectors of $C_{x y}$.

$$
\left[\begin{array}{cc}
0 & C_{x y} \tag{18}\\
C_{y x} & 0
\end{array}\right]\left[\begin{array}{l}
\vec{w} \\
\vec{c}
\end{array}\right]=\sqrt{\lambda}\left[\begin{array}{l}
\vec{w} \\
\vec{c}
\end{array}\right]
$$

We can rewrite Eq. (17) as

$$
\begin{equation*}
\vec{c}=\frac{1}{\sqrt{\lambda}} C_{y x} \vec{w} \tag{19}
\end{equation*}
$$

Then substitute Eq. (19) into Eq. (16)

$$
\begin{equation*}
C_{x y} C_{y x} \vec{w}=\lambda \vec{w} \tag{20}
\end{equation*}
$$

Similarly, we can get

$$
\begin{equation*}
C_{y x} C_{x y} \vec{c}=\lambda \vec{c} \tag{21}
\end{equation*}
$$

Theorem: Singular Value Decomposition (SVD)

If $A=U S V^{T}$, then U and V are eigenvectors of $A A^{T}$ and $A^{T} A$

$$
\begin{align*}
& A=U S V^{T} \tag{22}\\
& U^{T} U=V^{T} V=I \tag{23}\\
& A A^{T} U=U S V^{T} V S U^{T} U=U S^{2} \tag{24}\\
& A^{T} A V=V S U^{T} U S V^{T} V=V S^{2} \tag{25}\\
& {\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
U \\
V
\end{array}\right]=\left[\begin{array}{l}
U \\
V
\end{array}\right] S} \tag{26}
\end{align*}
$$

By comparing Eq. (20) and (24), we can know that \vec{w} is a singular vector of $C_{x y}$ and \vec{c} is a singular vector of $C_{y x}$. Therefore, by doing a simple SVD of $C_{x y}$ we can get \vec{w} from U, \vec{c} from V. And, this matches the solution in the paper "Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review".

