Partial Least Square (PLS)

Nanbo Sun

This document is about the derivation of Partial Least Squares Correlation (PLSC) which is mainly used in neuroimaging

1 Problem Statement

Given two random vectors \vec{x}, \vec{y} , which has been demeaned, we want to find two transformation \vec{w}, \vec{c}

$$t = \vec{w}^T \vec{x} \tag{1}$$

$$u = \vec{c}^T \vec{y} \tag{2}$$

to maximize the covariance between random variable $t \mbox{ and } u$

$$\max(E[tu])^2\tag{3}$$

under the condition that

$$\vec{w}^T \vec{w} = 1 \tag{4}$$

$$\vec{c}^T \vec{c} = 1 \tag{5}$$

2 Solution

$$\max_{\|\vec{w}\|=1,\|\vec{c}\|=1} (E[tu])^2 = \max(E[\vec{w}^T \vec{x} \vec{y}^T \vec{c}])^2$$
(6)

$$= \max(\vec{w}^T C_{xy} \vec{c})^2 \tag{7}$$

By using Lagrange multiplier, we get following equation

$$L(\vec{w}, \vec{c}) = (\vec{w}^T C_{xy} \vec{c})^2 - \lambda_w (||\vec{w}|| - 1) - \lambda_c (||\vec{c}|| - 1)$$
(8)

$$\frac{\partial L}{\partial w} = 2(\vec{w}^T C_{xy} \vec{c}) C_{xy} \vec{c} - 2\lambda_w \vec{w} = 0$$
(9)

$$\frac{\partial L}{\partial c} = 2(\vec{w}^T C_{xy} \vec{c}) (\vec{w}^T C_{xy})^T - 2\lambda_c \vec{c} = 0$$
(10)

Times \vec{w}^T, \vec{c}^T in both sides

$$\vec{w}^T (\vec{w}^T C_{xy} \vec{c}) C_{xy} \vec{c} = \lambda_w \vec{w}^T \vec{w} \tag{11}$$

$$\vec{c}^T (\vec{w}^T C_{xy} \vec{c}) C_{yx} \vec{w} = \lambda_c \vec{c}^T \vec{c} \tag{12}$$

Since $\vec{w}^T \vec{w} = 1, \vec{c}^T \vec{c} = 1$

$$(\vec{w}^T C_{xy} \vec{c})^2 = \lambda_w \tag{13}$$

$$(\vec{w}^T C_{xy} \vec{c})^2 = \lambda_c \tag{14}$$

It's easy to see that $\lambda = \lambda_w = \lambda_c$.

We can also write the above function in this way

$$\vec{w}^T C_{xy} \vec{c} = \sqrt{\lambda} \tag{15}$$

Substitute above Equation into Eq. (9) and Eq. (10), we can get following

$$C_{xy}\vec{c} = \sqrt{\lambda}\vec{w} \tag{16}$$

$$C_{yx}\vec{w} = \sqrt{\lambda}\vec{c} \tag{17}$$

The above equation shows that \vec{w}, \vec{c} are singular vectors of C_{xy} .

$$\begin{bmatrix} 0 & C_{xy} \\ C_{yx} & 0 \end{bmatrix} \begin{bmatrix} \vec{w} \\ \vec{c} \end{bmatrix} = \sqrt{\lambda} \begin{bmatrix} \vec{w} \\ \vec{c} \end{bmatrix}$$
(18)

We can rewrite Eq. (17) as

$$\vec{c} = \frac{1}{\sqrt{\lambda}} C_{yx} \vec{w} \tag{19}$$

Then substitute Eq. (19) into Eq. (16)

$$C_{xy}C_{yx}\vec{w} = \lambda\vec{w} \tag{20}$$

Similarly, we can get

$$C_{yx}C_{xy}\vec{c} = \lambda\vec{c} \tag{21}$$

Theorem: Singular Value Decomposition (SVD)	
If $A = USV^T$, then U and V are eigenvectors of AA^T and A^TA	
$A = USV^T$	(22)
$U^T U = V^T V = I$	(23)
$AA^TU = USV^TVSU^TU = US^2$	(24)
$A^T A V = V S U^T U S V^T V = V S^2$	(25)
$\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} U \\ V \end{bmatrix} S$	(26)

By comparing Eq. (20) and (24), we can know that \vec{w} is a singular vector of C_{xy} and \vec{c} is a singular vector of C_{yx} . Therefore, by doing a simple SVD of C_{xy} we can get \vec{w} from U, \vec{c} from V. And, this matches the solution in the paper "Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review".